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INTRODUCTORY CHAPTER 5

When the blunt peg is used this (practically) horizontal motion
does not continue so0 long: and, in general, a top with a fine
point or with a long leg will spin at a greater angle to the
vertical than one with either a blunt point or short leg.

A loaded sphere when spun on a rough surface also presents

& curious contradiction.

Fia. V. (a). Fia. V. (5.

If, for example, & hole is made in the side of a eroquet ball and
filled up with lead, when placed on a table the ball will settle
down to the position where the lead touches the table (Fig. v. a).
But if & really good spin be given to the ball the loaded part will
persistently rise, as indicated in Fig. v. (b), and under some con-
ditions may get to the position where it is at the highest point of
the sphere. (See Appendix IV.)

Many of the tops we have been accustomed to spin are hollow.
Has it ever occurred to the reader to ask what would be the
effect of filling a tin top with water, and making it water-
tight? The answer that occurs to most minds at once is
probably that it would spin much better; it is heavier, and

there is more of it generally. Let the experiment be made.
Figs. V1, VIL represent two tops which are in every particular
the same, except that the left hand one is full of water hermeti-
cally sealed. The empty one, if spun in the ordinary way, will
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continze to spin in an upright position; the other one will
lie down on its side at once, and spin violently llying at full
length on the table. Some such tops are a little uncertain
which to do. That in Fig. viir. has been constructed so that
the head can be unscrewed and water poured in. If empty
it spins very well, whether & big or
little spin be originally given to it.
When 1t is full of water a little spin
will only result in the top falling to
the ground; a good spin will keep it
upright in spite of the water. Such
tops can be readily constructed out
of small tins or similar receptacles
capable of being soldered and made
water-tight.

Figs. 1. and x. represent two hol-
low china eggs, exactly similar, with
the exception that one has been filled
with water and the hole stopped up
with sealing wax. If they are laid
down on the table, and & spin is given to each of them about
& vertical axis, they will behave in entirely different ways. The
empty one jumps up briskly on its end and continues to spin
in that position for a long time; the other will spin slowly on
its side for a short time and continue this uninteresting motion
till it stops: or if stopped prematurely by laying & finger on
it, will begin to spin again on removing the finger,

Pra. VIIT,

~

F1e. IX.—Bgg tull. Pia. X.—Fgg empty.

A real egg, if unboiled, and especially one which has had
its yolk thoroughly shaken up into li }:ﬂd form, will behave
In precisely the same way; but a hard boiled egg will spin
up on its end at once (especially if the table is rough) and
continue spinning for a long time. A similar phenomenon can
also be observed with acorns at a time when they are lying
thick in the roads. If they are kicked, in any way whatever,
they almost invariably skid along for & little way and then
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[20.] Should we get precession? If so, how would the axle move when
the motion is steady ?

2L.] What is the condition that a top should fall to its steady position?
‘What conduces to this condition ?

[22.] Discuss the rising of that form of top where the “bedy” to which
the spin is given revolves freely on a spindle carrying the toe; namely,
where the tos and spinning body are not riFidly connected. Does it arrive
at steady motion more quickly or mors slowly than the other kind ?

48. Tendency to spin about the greatest axis caused by
gyroscopic registance. The discussion lfiven in Art. 47 explains
the behaviour of the whip-top and loaded sphere* described in
the Introductory Chapter, as also that of the acorns and hard-
boiled eggs : for the friction at the point of contact tends to hurry
precession, but, instead of doing so, owing to gyroscogic Tesistanes,
it turns the body in a direction which raises the centre of
gravity, as in the case of the top. The phenomenon exhibited
by the top of Fig. v1, and by the egg of Fig. 1x., is caused by a
tendency of the liquid to spin a,gout its shortest axis, which
overcomes the effect of friction tending to bring the top on to
its longest axis with the centre of gravity raised. To understand
this thoroughly let us consider under what eonditions a body will
spin about its shortest axis in preference to any other.

49, Tenden% to spin about the least axis caused by centri-
fugal force. a rigid body, with three perpendicular axes of
symmetry, is free to turn in any direction about its centre of
gravi(l;iy &, and rotation be continuously given to the body about
a fixed direction through @, for example the vertical, but no other
forces act on it, the body will set itself so that its least axis
through G becomes vertical, and it will spin stably in this position.

For every particle composing the body tends (owing to what
is frequently called centrifugal force) to separate itself as far as
possible from the vertical axis, and so increase the moment of
1nertia about that axis. Hence the body will only spin stably
when the moment of inertia is as great as possible; namely when
the least axie of the body through @ is in a vertical position,

This can be easily illustrated by taking & stone or any other
rigid body attached to a string and, starting with the string
vertical, whirling the body round and round oneself as a vertical
axis, The body will rise higher and higher until the string is
horizontal; but having arrived at this position it will continue
to maintain it, whatever additional spin may be communicated
about the vertical axis.

Similarly, it will be seen that a liquid or viscous body which
is being made to rotate about & vertical axis will tend to change
48 shape, in such a way that its vertical axis becomes smaller;
and if there are no external forces tending to rotate the body,
but rotation has already been communicated about some axis,
this axis will tend to become smaller and smaller, as is the case
with the Polar axis of the Earth.

" *Bee Appendix IV,

I
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50. We shall now be able to see the reason for the behaviour
of the eggs and the tops which were full of liquid.

We know (Art. 47) that the shell, even though originally spun
about its shortest axis, would, if empty, rise and spin about its
longest axis, owing to the friction at the point of contact with
the table. But between the liquid and the shell there is com-
paratively little friction, so that the Liquid, once spun about ite
shortest axis, continues to spin about that axis; and being of
much greater mass than the shell it overcomes the latter’s
tendency to rise on to its longest axis, with the result that the
whole body, shell and liquid, spin about the shortest axis.

It is clear that the final behaviour of the egg, or top, must
depend, amongst other things, on the relative masses of the
liqyid and shell, and this accounts for the top of Fig. viL
spinning about its longest axis although full of water.

51. The gyroscopic top (Figs. xv.a, xv.b) is another, and
perhaps more remarkable, instance of the precession of the axle.

The forces acting on the top are (Fig. 25):

(i) its weight;

(ii) the normal reaction § at the point of contact of the top

with the spiral coil;

(iii) the tangential reaction ¥ at that point;

(iv) the reaction at the point of support O—not lettered in

the diagram.

In most models of this ’cﬁa,
the centre of gravity is made
to coincide with the point of
support, though in some it can
be adjusted so as to be either
above or below as required.

For the sake of mmplicity
we will consider that it is
coincident with the point of
support—though the follow-
ing explanation would only
require s little modification 1f
this were not so.

Let us regard the axle of
the top &s in the plane of the
paper, and let the spindle be rolling (left-handed as viewed from
0, the point of support) along the inside of the coil, into the
paper, and be approaching the end of the coil. The motion
will be most easily explained by considering first the effect
of the tangential reaction F at the point of contact P, and
then the a&ditiona.l effect of the normal reaction S.

(1) Tangential reaction. 1t is evident that the friction acts
into the plane of the paper and perpendicularly to it. This

Fie. 26,
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\
If, however, we hurry the top when spinning with the IM%Z;
precession ,, we get motion (3): § is positive and the top falls.

Top siinning on & blunt peg. We will now consider\a top
with & blunt peg spinning on an imperfectly rough suiface,
taking into account the forces already mentioned in Arxt. 47, and,
in addition, the resistamce of the air.

Fig. 84 shows the top with spin as marked, precessing into
the plane of the paper, and if we take any elemental circular
section, centre g, we see that forces due to air friction on this
section are similar to those on & golf ball (Appendix II., p. 138)

and reduce to a couple retarding the spin, and a force d@ in
the quadrant KgN, in the direction marked, retarding precession.
Thus the resultant of the total air-frietion on the top can be
represented by a couple retarding the spin and some force Q
acting so a8 to intersect GM.
We have, therefore, two possible results:

(1) If Q intersects GM below G, +)- is retarded.
(2) ” ” above @, , hurried,

and it depends on the shape of the top which of the two oceurs.
If the condition for the steady motion of the top be written
down, taking into consideration the friction at P, it will be seen,
as in the case of the fop on & fine point, that for one value of a
there are two possible values of v, consistent with steady
motion, which depend on the previous motion of the top; but
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gince the blunt peg causes w, to vary, the state of steady motion
mey only be momentary. Should the top reach this state, either
the hurrying or retarding of precession may cause the top to
rise (or fall): that is, either the friction at P or the force @ may
contribute to its rise (or fall). Hence the question of whether
a top can rise until its axis is vertical depends on the configura-
tion of the top.

Case of a top the toe of which is spherical. (Jellet’s equa-
tion,) Let us suppose the toe of the top to be a portion of a sphere
(Fig. 85) whose centre is O and radius . Let OG=h and the

ratio };" be denoted by k. Draw PM perpendicular to 30, and

let F be the component of friction perpendicular to the azimuthal
plane. Then, referring to Art. 128, we have by moments about GC:

Ciy— Aw,— Aoyl sin = — F.rsin,
reducing to Ciy= —F.rsgin.

Fra. 85,

Again the angular momentum about the vertical GV is
Ay-5in*0+ Cwogcos 8;
therefore, by moments about GV,

& (A 6int6+ Oy con 6)= F. hin .

Eliminating F, we obtain on integration,
A\}r sin?6+4 C'wscOS = — Cwsk+.N,
or —Aw,8in 0+ Cuwg(k+cos@)=N, ..... coeranenans 1)
where & is a constant depending on initial conditions.
This integral is %iven by Professor dJellet in his Theory of
Friction, Chap. VIII. (Ed. 1872), though obtained by a different

process, It is clear that the equation is true whether the plane
be smooth, imperfectly rough, or perfectly rough.
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Angular mementum and velocity at a.ng time of the top about
G'P and perpendicular axes. We have, by Jellett’s relation,

— Aw, s5in 0+ Cowy(k+cos 0)=N;
78in 6+Gwsr(k+cos 6)_Nr

whence —Aw, ’
P P P
or if p =GP, and the angle NGP=¢ (Fig. 86),
— Auw, sin ¢+ Cusy cos ¢=-1?,

i.e. the angular momentwm of the top at amy time about GP
=%, varies inversely as GP, and therefore decreases as the top

ri8es,

Again:
Moment of inertia about G.P =4 sin%p -+ C'cos®¢
: AX+ 07
2 »

P
X, 0, Z being coordinates of P, about axes (1), (2), (8) (Fig. 86}
Therefore the angular velocify about GP is given by

L Nr.
“= IXF 0P FE Ly
where ¢(X, Z) stands for A X%+ 022
If the motion were one of pure rolling about GP, with G at
rest, we should have

—w o
Fom 6 KFroosd

Each fraction, by Jellett’s relation,

_ N»

~ 2[4 sin?0+ C(k+cos 0]
=N 'I‘/ ¢ (L Z)’
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and the velocity of pure rolling about GP
Nr.
X, E)'

Hence it follows that:

At any moment the velocity about (¢) 18 always that necessary
Jor pure rolling at angle 6 with @ at rest:
and if the velocities about (@) and (b) became zero either
gradually or suddenly at any moment, the top would roll at the
same angle, with the velocity about (¢) which it had when the
velocities about (a) and () vanished.

This state of steady motion would eontinue indefinitely if it
were not for the resistance of the air and the frictional couple at
the toe.

The state of general motion of this toi may be built up from
the above steady motion by considering the angular velocities of
the top in the following manner:

We have

About (c) at any moment a velocity of the magnitude
necessary for pure rolling about (¢). In addifion, there is in
general :

About (@), an angular velocity «,, which, since the plane at P
is rouglix, causes & translational velocity v perpendicular to the
azimuthal plane.

Taking v as measured into the paper, we see,

if p.os>0,
the point P will be moving out of the paEer towards the reader:
friction will hurry the precession, and the top will rise if it is
inning with the smaller of the two possible azimuthal velocities.
:gimil&rly, if p.wa<<v, the top will fall.) This will cause,

Aboui (b), an angular velocity wy= 0. In this case, as before,
P may move or tend to move in the azimuthal plane either to
the left or right, so that the direction of friction in the azimuthal
plane may be in either direction.

It is clear that, if P-wa=1,
we have the state of steady motion, with G moving, as described
on pp. 48, 49, and the motion is one of pure rolling about some
instantaneous axis PX. The above considerations show that,
since friction is a passive force and only acts to prevent motion,
the prime cause of the rise of a top is the angular velocity about
axis (@) This velocity is the direct cause of @ moving erpen-
?ic% to the azimuthal plane, and the indirect cause o: 5 rising

or falling),

Provid%d the initial spin about GN is sufficiently large, the
top will not fail to rise ¥or want of velocity about axis (a), but
it may fail to rise owing to the configuration of the top, as is
shown by the following considerations,
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To determine the least spinwhich will enable the axle of the
top to become vertical. e will now proceed to a more detailed
discussion of this rising of & spinning top on an imperfectly
rough plane, employing the assumptions that the friction between
the top and the ground may be represented by a single force at
the point of contact, and that when slipping takes place the
direction of the force of friction is opposite to the direction of
sliding or, at any rate, acts so that kinetic energy is dissipated.
It has already been pointed out (Arts. 47 and 66) that the frietion
we are here considering in no way contributes to the eventual
fall of the top. Assuming that the fop attains a state of steady
motion, spinning in a vertical position with angular velocity =
about its axle, having been started with initial velocity , about
its axle, we can, from considerations of energy, obtain an inferior
limit to ». For, putting #=0 in equation (1), we obtain

N=C(k+1)n.
Also, N =Cwy(k+cos a) from initial considerations;

'nzmg(k+cos a).
k+1
Now, since some kinetic energy has been dissipated, the total loss
of kinetic energy is greater than the work done against gravity
1 2 1 Coog’(kt-cos o)t —cosa):
Therefore 5 Cu, 3 GhF1Y >gh(l—cong);
whence, after dividing by (1—cos a),

2(k+1)gh
o> Tk T oosay e (2)

the mass of the top being taken as urnity.

Unless the initial spin satisfies this condition, it is impossible
for the axle to become permanently vertical. It is obvious that
if r is supposed to be small, so that k is Jarge, the limiting value
of n is large and tends to infinity as » diminishes to zero. Hence
it is impossible for a top to rise on a perfectly fine peg. (See
page 158, Case 1(c).)

Conditions necessary in order that & top may rise to a per-
manently vertical position. The explanation given in Art. 47
on the rising of a spinning top is based on the assumption that
friction acts in the same direction throughout the motion. Some
tops, however, fail to rise to the vertical position whatever the
magnitude of the initial spin, even if the direction of friction
does not alter. The following investigation from considerations
of energy alone has been adapted from an article® by Mr. E. G.
Gallop, with the author’s kind permission.

*Part ITI., Vol. XIX., of the Transactions of the Cambridge Philosophical

--Society, to which the reader ia referred for a fuller investigation.
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To find the minimum value of the energy, for a given value
of 6, subject to Jellett's equation. Let v be the velocity of G
ab any time; then 7, the kinetic energy, is given by

2T =02+ dw?+ A+ Cogt.
If the potential energy is reckoned zero in the initial position,
the total energy FE at any time is given by
E =T gh(cos §—cos a).

The minimum value ever possible for E at any given inclina-
tion 6 to the vertical will occur when v=0 and w,=0 (for v and
w, are independent of @ and can be zero), in which case the top
will be for the instant in a state of ateady motion with @ at rest,
the axis describing a fixed cone of which @ is the vertex. In
this case of minimum energy we have, 0 being regarded as
constant,

Awyde, + Coydeo, =0,
while, for variations of duw,, duw,, subject to Jellett's condition,
— 4 sin  dw, + C(k +cos 0)dew, =0.

~e___ 9
Hence sine—mgﬁ R OTIRRON ()
- - from (1
~ Asin® 0+ O(k+cos 6’ rom (1),
1 1 1 N2
and 3 de’+g o= I T Gk Too O

It follows that the minimum value of energy possible at the
inclination @ to the vertical is

1 N
=ghieos8—cos o)ty For e O T e O
or writing cos =2,

1 N?
E=gh(@—cosa)t3 70 —om Ok rap
while from relation (8) we have
—w;, _
r8in® h+recosd’

e Oy o
e PMTeM
and the motion is one of pure rotation about PG; so that there
is no sliding friction at the point of contact, and the top is
spinning steadily, as already pointed out above.
The minimum energy equation may be written

1 N
E=gh(z—cos a)+§.7w=17'(w) say.
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Tt will be noticed that the last term represents the minimum
rotational energy.

Considering then the minimum energy curve £=2F(), we see
that it forms a kind of barrier between the actual value of the
energy of the top and the zero value. Itis clear that if it is of
the form (L) in Fig. 87, the top may reach a position E, of
minimum energy for the particular value of 8 corresponding to
z,, and on subsequent dissipation of energy it must spin at a
larger value of 6: further, it will subsequently reach the position

;/’-“
\

A
-

]

mecremNrsnasavrnores

45‘::,.‘,"”‘i

Lesssssnassssas

e

-

0{!-0 ;‘.;' X

H

Fro. 8T.

2,, from which it must fall to the ground, since the energy at =,
is the minimum possible for spinning at all If, however, the
curve is of the form (IL.), continned dissipation of energy insures
eventual rising to the vertical position.

The condition then that the curve of minimum ener, ghall be
of form (IL.), shown in the figure, is a sufficient (though not
necessary) condition that the top can rise to the vertieal position,
provided the initial spin is sufficiently large.

We require, then, that the possible minimum energy shall
decrease as @ increases, and consequently, since gh(z—cosa)
increases with @, we must have two conditions:

1 N? . .
a) ¢ =— decr a8 @ increases,

(a) 3 7@ decreases

® - » faster than gh(x —cos a) increases, for there
is & loss of energy on the whole.

Condition (a) gives

f(@)y=A(1—a?)+C(k+a) is increasing;
o f(@)y=2(C—A)z+20k>0.

If C> A this condition is always satisfied since k is positive.
If C < 4 it is satisfied when

C-A+4Ck>0,
ie CE+1> 4,
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for writing #=1 gives the greatest value to the negative part of
the expression.
Condition (b) gives:

2
Decrease in ;— ];Z(V?) > increase in gh(x —cos a),

1 N%f'(x)
= ETer "
for all values of  between —1 and 1.

If we find the condition that 4 E:))]z continually diminishes, it

will be sufficient to ensure, in addition, that
LV
2 FE~ 7
Now, with our present conditions, f(x)
continually increases from —1 to 1; hence
its graph 18 as drawn (Fig. 88), according as
Cis= 4.

If Cis << A, we see that f(x) decreases
and f(w) increases continually ;

( . ; H
[ff((T))]’ continually decreases. v ey
If Cis > A, both f'(«) and f(x) increase,
but it can be shown* that [% continues
to diminish if f(z) cuts the axis in real
points, namely, 1f Fio 8B,
40 > 4(0— YO+ 4), -
which reduces to B>1 -—%.
* Considering the parabola y=Kz%-L,
wo have :—’;=2Kx.
dy Kx2-L
Now v = or
1 L
=3(=-1)-

. . . . 1 L
The differential coefficient of this = é(l + E’) s
which is always positive if L is positive, i.e. if the parabola outs the axis of z in
real points.
L=z}
Vi)

sy /:_.: (a.nd much more so y® / :——g) inoreases under these conditions, and

decreasss if f(x) cuts the axis of 2.
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Hence the conditions required are:

Ko< A4, CE-E1)> A} wrveemmeeeserssssssssseceresnnns @
0> 4, S T ®)
. 1 NP1
and in both cases 3 DT > gh,
ghC:(k+1)*
or N‘>-—————-—C(k+1)_A. ...................... (6)

If the initial motion consists of & spin w, about the axis of
figure, N = Cuy(k+cos ), and the last condition reduces to

(k+1Ygh
m02> {0(k+1)—A}(k+OOSa)2. ................. (7)

Tt follows, therefore, that (4) and (7), or (5) and (7), each repre-
sent a complete set of conditions which insure the top rising
to the vertical position, It will be noticed that (4) and (5) refer
to the construetion of the top only, while (7) refers to the initial
motion also.

It can be easily verified that the value of w, obtained in (7) is
greater than that obtained in (2). This result is to be expected,
gince in (7) is involved also the condition that throughout the
mo.tioi rotational energy is lost faster than potential energy is
gaine

Tt will be noticed in the above investigation, that

(1) The translational velocity of the top has not come under
consideration,

(2) The expression f(z), which is found to be increasing, can
be written

flay= 5 {Ar*6i0+C(h+rcos 6}

= (A +05Y,

where X, Z are the coordinates of the point P of the top.
Henee, at any given inclination 6, the point P lies on some
ellipse whose equation is

AX+ 072 =K, some constant,

and the eondition that f(x) is increasing is the condition that
the mnext ]l)]osition of P is outside the ellipse in question. It
is clear that this ellipse is one of the principal traces of
the ellipsoid of inertia, drawn to such a scale that it passes
through P.

This representation is somewhat analogous to Poinsot's repre-
sentation of the motion of a body under no forces, if we imagine
the body to be subsequently disturbed.
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(8) Jellett's relation,
—Aw,58in 6+ Cuwy(k+ cos §)=N,
can be written - Aw X+ Cw,Z=1Nr,

showing that the point P of the top always lies on the polar of
the point (—e,, @) with respect to the ellipse

AX?4CZ%=Nr

which is an ellipse similar and similarly situated to the one
mentioned previously.

Explanation of the rising egg. The above investigation
also shows the limiting conditions under which a hard-boiled
egg or an acorn will rise on to its longest axis (see Chapter I.
and Art. 48). In this case € is <A, and the end of the egg
or acorn 18 in general approximately spherical in shape.
Thesﬁr:ama.ining condition that C(k+1)>4 is also in general
satisfied.

Further condition in the case of the loaded sphere. In
the case, however, of the loaded sphere described on page 5, the
diameter of the sphere which passes through the centre of the
load will not become vertical for every load, however great
the initial spin may be, since the condition C(k+1)>A4 will not
be satisfied for all positions of the centre of the load. Let O be
the centre of the original sphere, B its radius, and M the mass
of the complete sphere before being hollowed out. Let o be
the centre of the loaded portion, r its radius, and let m be
the excess of the mass of the load above the mass removed.
Let Oo=c.

me Mec
Then OG=h=M+m, G°=M+m’
2 2 2 2 Mmc?
Hence C< 4,
The condition Ck+1)>4
Mmc? |
beeomes Ck>A-C v
. m ¢ Mmc®
that is, 0M+m'§>M+m’
M
¢ M MR2
o >3 Ay

T
« 4<343R)




