A Particle Collision Model for Calculating the Energetic Cost of Legged Locomotion Andy Ruina, Cornell TAM (&MAE)

with

Manoj Srinivasan, Cornell TAM & Princeton MAE John Bertram, Calgary Medical School

Some support from N\$F.

Read all about it:

J. Theor. Biol., **237**, Issue 2, Pages 170-192, Nov 2005

Nature, **439**, Pages 72-75, Jan 2006.

TAM, Cornell Feb 06 "Dynamic Walking", May 06

General Goal: Understand coordination choices of animals (including people).

General Approach: Assume the principle of maximum laziness.

Animals move in such a way as to minimize their use of energy: Your great great ... great great grandmother's sister died (young).

Some issues/caveats:

- **Selection does not mean, exactly, optimization.**
- **X** There is selection for other things,
	- e.g., speed, weight bearing, IQ, sharp teeth,...
- Energy use per unit _______ ?
- **X** How to calculate relation between motion and
	- energy use (we use: cost = muscle work)
- **X** Math 191, optimization is inherently inaccurate.

Performance Optima tend to be insensitive to control parameters.

When work is substantial, energy use is roughly proportional to work.

Assume a spherical horse...

- That's too hard
- Make it a small sphere, a particle
- Massless legs

Leg Work W:

$$
W = \int dW = \int P dt = \int \mathbf{F} \cdot \mathbf{v} dt = \int F \dot{\ell} dt = \int F d\ell
$$

Minimizing work at fixed v and d finds solutions which spend most time with *Power* = 0: *l = 0 or F=0* **Fig. 1 Srinivasan & Ruina .**
.

gets close to a \mathbf{L} <u>u</u> Continuous solution gets close to an *x* impulsive solution as numerical grid gets finer.

= v[−] *·* P[∗] + *|*P∗*|* Chemical *^E*˙ ⁼ ⁴ *·*(Mechanical power) *W* = *E* = *E* = *E* = *m* = *E* # *[|]*v+*[|]* February 13, 2006 Relate impulse and work (2 ways)

!*dt* =

The im |
| ulse is The 9 = v[−] *·* P[∗] + *|*P∗*|* The impulse is I. Net change:
The impulse is **II.** Integrate:

 $\frac{1}{\sqrt{2}}$

$$
\mathbf{P}^* = \int_{t_1}^{t_2} \mathbf{F} dt = \hat{\lambda} \int_{t_1}^{t_2} F dt
$$

Impulse momentum *t*1 A

 $m\mathbf{y}^+ = m\mathbf{v}^- + \mathbf{P}^*$

 $=$ m

$$
(net) Work Energy
$$
\n
$$
W = \Delta E = \frac{m}{2} (|\mathbf{v}^+|^2 - |\mathbf{v}^-|^2)
$$
\n
$$
= \mathbf{v}^- \cdot \mathbf{P}^* + |\mathbf{P}^*|^2 / (2m).
$$

.
.-

 $+$ **P**

Calculate the (net) work *^W* ⁼ [∆]*^E* ⁼ *^m* ² [−] *[|]*v−*[|]* ²*/*(2*m*)*.* (1) \mathbf{r} + \mathbf{r} + F*dt* = λˆ *Fdt* (2) The partial impulse $P, 0 < p < 1$, is $\mathbf{P}(t) \equiv$ \int_0^t *t*1 $\equiv \int_{a} \mathbf{F}(t')dt' = p\mathbf{P}^*$ W $\int d$ " *^t*² $W = \int dW = \int \mathbf{v}$ (v[−] + P*/m* $\begin{matrix} 0 & \longrightarrow \\ & \vee \end{matrix}$ ${\bf P}/m\big)$ %&'(F*dt* $\int_0^1 (\mathbf{v}^- + p\mathbf{P}^*/m) \cdot \mathbf{P}$ $= \mathbf{v}^- \cdot \mathbf{P}^* \int_0^1 d\mathbf{p}$ *^W* ⁼ [∆]*^E* ⁼ *^m [|]*v+*[|]* = v[−] *·* P[∗] + *|*P∗*|* ²*/*(2*m*)*.* (1) " *^t*² F*dt* = λˆ \mathcal{L} \longrightarrow (2) " *^t* $dt' = p\mathbf{P}^*$ " $dW =$ $\int_{}^{t_{2}}$ *t*1 $\mathbf{v} \cdot \mathbf{F} dt$ = $\int^{\mathbf{P}^*}$ 0 $({\bf v}^-+{\bf P}/m)$ $\begin{array}{c}\n\diagup \\ \diagdown \\ \mathbf{v}\n\end{array}$) *· d*P $\sum_{\mathbf{F}dt}$ F*dt* \int_0^1 $\overline{0}$ $(\mathbf{v}^- + p\mathbf{P}^*/m) \cdot \mathbf{P}^* dp$ \int_0^1 $\overline{0}$ *dp* $\begin{bmatrix} 1 \end{bmatrix}$ + P[∗] *·* P[∗] *m* \int_0^1 $\overline{0}$ *pdp* $\begin{array}{r} \hline 1/2 \end{array}$ $^{2}/(2m).$ = $\mathbf{v}^{-} \cdot \mathbf{P}^{*} + |\mathbf{P}^{*}|^{2}/(2m)$ ϵ |
|
| |
|
| ์
ว alla.
F $|\mathbf{v}^{+}|^{2} - |\mathbf{v}^{-}|^{2}$ \mathbf{v}^{-} \mathbf{v}^{-} \mathbf{v}^{-} \mathbf{v}^{-} \mathbf{v}^{-} \mathbf{v}^{-} \mathbf{v}^{-} \mathbf{v}^{-} ²*/*(2*m*)*.* (1) Fdt $\mathbf{p}(t) = \int_0^t \mathbf{F}(t)dt$ where the period of force application is between ϵ and ϵ and ϵ and ϵ and ϵ is between ϵ is and ϵ is and ϵ is an ϵ is a en die bestied van die bestied
Die bestied van die bestied va **.** —
।
।

Calculate the (net) work (net) Work Energy = v[−] *·* P[∗] + *|*P∗*|* Chemical *^E*˙ ⁼ ⁴ *·*(Mechanical power) \mathbf{r} + \mathbf{r} + F*dt* = λˆ The partial impulse $P, 0 < p < 1$, is $\mathbf{P}(t) \equiv$ \int_0^t *t*1 $\equiv \int_{a} \mathbf{F}(t')dt' = p\mathbf{P}^*$ W $\int d$ " *^t*² $W = \int dW = \int \mathbf{v}$ (v[−] + P*/m* $\begin{matrix} 0 & \longrightarrow \\ & \vee \end{matrix}$ $\int_0^1 (\mathbf{v}^- + p\mathbf{P}^*/m) \cdot \mathbf{P}$ $= \mathbf{v}^- \cdot \mathbf{P}^* \int_0^1 d\mathbf{p}$ " *^t*² F*dt* = λˆ " *^t* $dt' = p\mathbf{P}^*$ " $dW =$ $\int_0^t 2$ *t*1 = $\int^{\mathbf{P}^*}$ 0 $({\bf v}^-+{\bf P}/m)$ $\begin{array}{c}\n\diagup \\ \diagdown \\ \mathbf{v}\n\end{array}$ \int_0^1 $\overline{0}$ $(\mathbf{v}^- + p\mathbf{P}^*/m) \cdot \mathbf{P}^* dp$ \int_0^1 $\overline{0}$ *dp* $\begin{bmatrix} 1 \end{bmatrix}$ $^{2}/(2m).$ = $\mathbf{v}^{-} \cdot \mathbf{P}^{*} + |\mathbf{P}^{*}|^{2}/(2m)$ The im 6 *·* |
| ulse is The ϵ |
|
| |
|
| !*dt* = ์
ว alla.
F $m\mathbf{y}^+ = m\mathbf{v}^- + \mathbf{P}^*$ *E* \overline{L} **Mork 2** $\frac{1}{2}$ Work Energy $W = \Delta E = \frac{m}{2}$ $|\mathbf{v}^{+}|^{2} - |\mathbf{v}^{-}|^{2}$ \mathbf{v}^{-} \mathbf{v}^{-} \mathbf{v}^{-} \mathbf{v}^{-} \mathbf{v}^{-} \mathbf{v}^{-} \mathbf{v}^{-} \mathbf{v}^{-} Impulse momentum *W* = *E* = *E* = *E* = *m* = *E* 9 # *[|]*v+*[|]* February 13, 2006 = v[−] *·* P[∗] + *|*P∗*|* ²*/*(2*m*)*.* (1) \int_0^t *t*1 $\mathbf{F} dt = \boldsymbol{\hat{\lambda}}$ \int_0^t *t*1 Fdt $\mathbf{p}(t) = \int_0^t \mathbf{F}(t)dt$ where the period of force application is between ϵ and ϵ and ϵ and ϵ and ϵ is between ϵ is and ϵ is and ϵ is an ϵ is a *t*1 A *dW* = v *·* F*dt* (v[−] + P*/m*) *· d*P $W = \Delta E = \frac{m}{2} (|\mathbf{v}^+|^2)$ $\overline{}$ $\mathbf{1}$ $\mathbf{P}^* = \int^{t_2} \mathbf{F} dt = \hat{\lambda} \int^{t_2} F dt$ en die bestied van die bestied
Die bestied van die bestied va **.** —
।
। $\frac{1}{\sqrt{2}}$ $=$ m .
.- $+$ **P** 2 $(|\mathbf{v}^+|^2 - |\mathbf{v}^-|^2)$ $=$ $v^- \cdot P^* + |P^*|$ The impulse is I. Net change:
The impulse is **II.** Integrate:

Relate impulse and work (2 ways)

 $\mathbf{P}^{*}=% \begin{bmatrix} \omega_{11} & \omega_{12} & \ldots & \omega_{1n-1} \ \omega_{21} & \omega_{22} & \ldots & \omega_{2n-1} \end{bmatrix}% ,$

 $\bigg($

0

 n

^W ⁼ [∆]*^E* ⁼ *^m*

^W ⁼ [∆]*^E* ⁼ *^m*

= v[−] *·* P[∗] + *|*P∗*|*

² [−] *[|]*v−*[|]*

 \mathcal{L}

*[|]*v+*[|]*

 ${\bf P}/m\big)$

%&'(F*dt*

+ P[∗] *·* P[∗]

m

 $\mathbf{v} \cdot \mathbf{F} dt$

) *· d*P

 $\sum_{\mathbf{F}dt}$ F*dt*

 \int_0^1

 $\overline{0}$

 $\begin{array}{r} \hline 1/2 \end{array}$

pdp

²*/*(2*m*)*.* (1)

Fdt (2)

²*/*(2*m*)*.* (1)

 \longrightarrow (2)

Net Work in "Collision" is

Met Work in "Collision" is

positive (generated) work - negative (absorbed) work.

$$
\Delta E = -E_a + E_g
$$

where Ea = must be constructed to the East of the E
Sumptions: More assumptions:

- Leg is close to vertical
- $\begin{array}{c} \begin{array}{c} \end{array} \ \end{array}$ • Motion is close to horizontal
- E^a is the energy absorbed in leg shortening and E^g is • Speed is close to constant

One shallow angle collision:

Change in energy in collision: $\Delta E = -E_a + E_g$ \sim done equal to the amount previously absorbed. It is in the amount previously absorbed. It is

Passive Walking and rimless wheel (rolling polygon) Passive Walking and rimless wheel (rolling

Simplest model of passive-dynamic walking s implest model of $\begin{array}{ccc} & & & s \end{array}$

Rimless wheel **with a collision of the collision of the right-**(rolling polygon) \sim

r = 0, eg = 0 Energetic cost of taking one step

$$
E_m = b\phi^2 v^2 m/2
$$

inefficiency, about 4

Similarly for running.

(b) Passive running downhill (b) **SIMIIArly for runing

(b) Passive running**

f

$$
\sqrt{1 - E_m} = b\phi^2 v^2 m/2
$$

shevsky (1948). Consider running as a point mass colli-

(step length) $/$ 2(leg length)

and the mentioned in Tucker (1975) and a strike (1985) and a strike (1985) and a strike (1975) and a strike (1975) $\frac{1}{2}$ \mathcal{M} and \mathcal{M} are collisional cost of walking can be constructed as \mathcal{M} $\overline{\mathbf{v}}$ and $\overline{\mathbf{v}}$ etc. We take the nominal (nearly constant) forward speed with gravitational energy supply. Balanced with gravitational energy supply.

Hodograph: trajectory of tip of velocity vector

from constant *v* circle

Energy saving trick for walking: then land on leading leg *(eg = -1)* B *V***+** C old stance leg collision reduction factor i $= J$
= $E_m / (bmv^2\phi^2/2)$ $\phi/2$ path **i** 11 i *1* $\phi/2$ ii *1/4* new stance leg *V* **-** A

Pushoff with trailing leg *(eg = +1)*

Energy saving trick for running: then push off *(net eg = 0)* B *V***+** C collision reduction factor *= J* i path $\phi/2$ ii i *1* ii *1/4* $\phi/2$ new stance leg *V* **-** A Absorb first

Pseudo-elastic collision (no real elasticity).

Energy saving trick for running: then push off *(net eg = 0)* B *V***+** C collision reduction factor *= J* i path $\phi/2$ ii i *1* ii *1/4* $\phi/2$ new stance leg *V* **-** A Absorb first

Pseudo-elastic collision (no real elasticity).

Two morals:

 1) A sequence of collisions uses less energy than a single collision (for given deflection angle) II) A pseudo-elastic collision uses less energy than a plastic collision.

Horse gallop: Seems to use both systems: Ba-duh-dump ba-duh-dump

Relation between brachiation and galloping

Relation between brachiation and galloping

Relation between brachiation and galloping

Somewhat odd result: csull.

 An infinite number of infinitely small collisions, each "orthogonal" to the path, tends to **perfectly elastic**, no matter the nature of the individual collisions (plastic or generative or in-between). er the n Turriudal Colli
Itween)

"Simultaneous" collisions **Colligions and the sequential and the net collision is** 16 Cimultango aug" collisione **butulated by considing** $\overline{}$ i. *P1 * P2 * t* Lis["] collision

$$
m\mathbf{v}^{+} = m\mathbf{v}^{-} + \mathbf{P}_{1}^{*} + \mathbf{P}_{2}^{*}
$$

$$
W = \Delta E = \frac{m}{2} ((v^{+})^{2} - (v^{-})^{2})
$$

$$
W_1 = \int dW_1 = \int_{t_1}^{t_2} \mathbf{v} \cdot \mathbf{F}_1 dt
$$
\n
$$
= \int_0^{\mathbf{P}_1^*} (\mathbf{v}^- + (\mathbf{P}_1 + \mathbf{P}_2)/m) \cdot d\mathbf{P}_1
$$
\n
$$
= \int_0^1 (\mathbf{v}^- + (p\mathbf{P}_1^* + q\mathbf{P}_2^*)/m) \cdot \mathbf{P}_1^* dp
$$
\n
$$
= \mathbf{v}^- \cdot \mathbf{P}_1^* \int_0^1 dp + \frac{\mathbf{P}_1^* \cdot \mathbf{P}_1^*}{m} \int_0^1 pdp
$$
\n
$$
+ \frac{\mathbf{P}_1^* \cdot \mathbf{P}_2^*}{m} \int_0^1 qdp
$$
\n
$$
= \mathbf{v}^- \cdot \mathbf{P}_1^* + |\mathbf{P}_1^*|^2/(2m) + (\mathbf{P}_1^* \cdot \mathbf{P}_2^*)s_o/m
$$

$$
W_1 \geq 0 : \mathbf{v}^- \cdot \hat{\lambda}_1 \geq 0 \text{ and } \mathbf{v}^+ \cdot \hat{\lambda}_1 \geq 0
$$

$$
W_2 \leq 0 : \mathbf{v}^- \cdot \hat{\lambda}_2 \leq 0 \text{ and } \mathbf{v}^+ \cdot \hat{\lambda}_2 \leq 0
$$

= × • P∗ $W_2 = \mathbf{v}^- \cdot \mathbf{P}_2^* + |\mathbf{P}_2^*|^2 / (2m) + \mathbf{P}_1^* \cdot \mathbf{P}_2^* (1 - s_o) / m$ $W_2 = {\bf v}^- \cdot {\bf P^*_2} + |{\bf P^*_2}|^2/(2m) + {\bf P^*_1} \cdot {\bf P^*_2}(1-s_o)/m$

 $\frac{1}{\sqrt{2}}$

"Simultaneous" collisions **Colligions and the sequential and the net collision is** 16 Cimultango aug" collisione **butulated by considing** $\overline{}$ i. *P1 * P2 * t* Lis["] collision

$$
m\mathbf{v}^{+} = m\mathbf{v}^{-} + \mathbf{P}_{1}^{*} + \mathbf{P}_{2}^{*}
$$

$$
W = \Delta E = \frac{m}{2} ((v^{+})^{2} - (v^{-})^{2})
$$

$$
W_1 = \int dW_1 = \int_{t_1}^{t_2} \mathbf{v} \cdot \mathbf{F}_1 dt
$$
\n
$$
= \int_0^{\mathbf{P}_1^*} (\mathbf{v}^- + (\mathbf{P}_1 + \mathbf{P}_2)/m) \cdot d\mathbf{P}_1
$$
\n
$$
= \int_0^1 (\mathbf{v}^- + (p\mathbf{P}_1^* + q\mathbf{P}_2^*)/m) \cdot \mathbf{P}_1^* dp
$$
\n
$$
= \mathbf{v}^- \cdot \mathbf{P}_1^* \int_0^1 dp + \frac{\mathbf{P}_1^* \cdot \mathbf{P}_1^*}{m} \int_0^1 pdp
$$
\n
$$
+ \frac{\mathbf{P}_1^* \cdot \mathbf{P}_2^*}{m} \underbrace{\int_0^1 qdp}_{s_o}
$$
\n
$$
= \mathbf{v}^- \cdot \mathbf{P}_1^* + |\mathbf{P}_1^*|^2/(2m) + (\mathbf{P}_1^* \cdot \mathbf{P}_2^*)s_o/m
$$

$$
W_1 \geq 0 : \mathbf{v}^- \cdot \hat{\lambda}_1 \geq 0 \text{ and } \mathbf{v}^+ \cdot \hat{\lambda}_1 \geq 0
$$

$$
W_2 \leq 0 : \mathbf{v}^- \cdot \hat{\lambda}_2 \leq 0 \text{ and } \mathbf{v}^+ \cdot \hat{\lambda}_2 \leq 0
$$

$$
W_2 = \mathbf{v}^- \cdot \mathbf{P_2^*} + |\mathbf{P_2^*}|^2 / (2m) + \mathbf{P_1^*} \cdot \mathbf{P_2^*} (1 - \mathbf{s_o}) / m
$$

"Simultaneous" collisions **Colligions and the sequential and the net collision is** 16 Cimultango aug" collisione **butulated by considing** $\overline{}$ i. *P1 * P2 * t* Lis["] collision

 $W_2 \leq 0$: $\mathbf{v}^- \cdot \hat{\lambda}_2 \leq 0$ and $\mathbf{v}^+ \cdot \hat{\lambda}_2 \leq 0$ $k = \frac{1}{2}$ for the case of a single impulse (Eqn. 36 weight) (Eq. 36 weight) : $\mathbf{v} \cdot \lambda_2 \leq 0$ and

= × • P∗ $W_2 = \mathbf{v}^- \cdot \mathbf{P_2^*} + |\mathbf{P_2^*}|^2/(2m) + \mathbf{P_1^*} \cdot \mathbf{P_2^*}(1 - s_o)/m$ $W_2 = {\bf v}^- \cdot {\bf P^*_2} + |{\bf P^*_2}|^2/(2m) + {\bf P^*_1} \cdot {\bf P^*_2}(1 - \overline{s_o})/m$

fore force in another direction climbs above zero, then the The work depends on the order parameter s₀. Δ by successive use of Δ by successive use of Δ **Application to walking** For walking we take P[∗] W = 1200 An the impulse from the trailing order from the trailing order from the trailing order for the trailing order for ther distinguished limit. We can 2
2
2 de 2012 ≠ (v For the cases of the cases we can assume that the cases we can assume that the cases impulse only does with one sign. For definiteness Λ $\overline{}$ $\frac{1}{2}$ er parameter s_{0.} .
other dictinguiched limit ouler gischigaished minu. W = ∆E → 2n the order For the cases of main interest we can assume that each impulse only does with one sign. For definiteness of Ano ² is totally absorbto which the collision is simultaneous collision in the collision of the collision is simultaneous (see Fig. 9 μ and κ is σ . aer distinguished limit as would be the case impulses proportions of the impulses propor-The work depends on the order parameter so. Another distinguished limit.

Back to walking

Back to walking

Even within collisional/rolling model, energetics is sensitive to details.

Punchline

Punchline

Even within collisional/rolling model, energetics is sensitive to details.

