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General Goal: Understand 
coordination choices of animals 
(including people).

General Approach: Assume the 
principle of maximum laziness.

Animals move in such a way as to minimize their 
use of energy:  Your great great   . . .    great . . .
                       . . .   great grandmother’s sister . . .
                                             . . .     died (young).
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Some issues/caveats:
 Selection does not mean, exactly, optimization.

 There is selection for other things, 

 e.g., speed, weight bearing,  IQ, sharp teeth,...

 Energy use per unit  _______  ?

 How to calculate relation between motion and    

     energy use (we use: cost = muscle work)

 Math 191, optimization is inherently inaccurate.
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Performance

Parameters

Model optimum
Real human optimum

Range of parameters giving near
optimum performance in reality

Big

Big

small

reality
model

small

Optimization can’t predict parameters well.

Optima tend to be insensitive to control parameters.
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When work is substantial, 
         energy use is roughly proportional to work.
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• That’s too hard

• Make it a small sphere, a particle

• Massless legs

Assume a spherical horse...
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Leg Work W:
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Minimizing work at fixed v and d finds solutions which 
spend most time with  Power = 0:     l = 0 or F=0

d

Flight 
Stance 

Fig. 1 Srinivasan & Ruina

b) Inverted pendulum walka) Some possible gaits

c) Impulsive run d) Hybrid intermediate gait: pendular run
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Save calculation effort with new 
assumption/approximation:

All work is done impulsively.

Work calculations                Collision calculations

to upwards motion is accomplished with an impact free

mechanism, and 2) the making of contact with the hand-

holds is at near-zero relative velocity, also minimizing im-

pact losses. For ricochetal locomotion collisional dissipa-

tion shows its importance not by the energy it demands,

but by its avoidance.

Can an animal swing against the ground? It is puz-

zling that gibbons can ‘run’, albeit sort of upside-down,

with no dissipative collisional impacts, but that right-

side-up legged locomotion seems tied to collisional loss.

Are there corresponding collisional-loss reduction mech-

anisms for running right-side-up? Of course the obvious

answer is yes, “springs” (e.g., Alexander 1990). But be-

cause animal limbs are not passive elastic springs (ap-

parent leg elasticity is achieved with at least some mus-

cle work). A motivation for the present research was a

hope of finding dissipation reduction schemes that, like

the dissipation-avoidance schemes used by gibbons, are

not tied to material elasticity.

The point-mass compressional-leg

glancing collision model

Before we can discuss howmetabolic costs of locomotion

can be reduced, we first present our collisional model for

calculating some of these costs. This collisional model

allows simple approximate calculation of costs associated

with leg forces that, when viewed in detail, are smooth

and non-impulsive. All later discussions of biologically-

relevant cost-reduction mechanisms are based on the for-

mulas developed in this section.

We approximate the body as a point mass and the leg

as a massless strut that can only transmit forces along

its axis (that is, for most of the discussion we neglect

hip and shoulder torques during the collision). For cal-

culations we assume, consistent with the assumption of

short contact time, that during a collision gravity forces

are negligible and that the leg angle changes negligibly.

Within this context, our overall model of locomotion is

of smooth flight or stance phases punctuated by sudden

velocity changes caused by impulsive leg forces.

Our collisional model is similar to the “compression-

restitution” model of point-mass collisions discussed in
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Figure 2: The glancing collision model. (a) A particle collides
with the ground through a single leg with a net deflection angle

of φ = φ+ + φ−. The force F during the collision comes from

the leg whose direction is approximated as constant λ̂ during

the collision. (b) The net impulse of one leg on the mass m is

P
∗. (c) The same collision viewed at a coarser scale where the

details of the collisional interaction are not shown. (d) A point-

mass has an exclusively absorbing (perfectly plastic) collision.

(e)A point-mass has a pseudo-elastic collision. (f)A point-mass

has an exlusively generating collision.

elementary mechanics books but with 4 differences:

1. Here we have an emphasis on glancing, shallow an-

gle collisions rather than normal (direct) impact,

2. Here we take account that biomechanical collisions

need not cause a reduction in system kinetic energy.

In classical mechanics, a collision typically refers to

a purely passive, dissipative interaction between two

objects which approached each other rapidly. Here

a collision can involve both purely passive mecha-

nisms and actively muscular mechanisms. Collisions

here can increase kinetic energy. In this sense, these

collisions are a generalization of conventional pas-

sive collisions.

3. Here we look at one collisional episode as possibly

made up of a sequence of sub-collisions, and
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mv+ = mv− + P∗

W = ∆E =
m
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(
|v+|2 − |v−|2

)

= v− · P∗ + |P∗|2/(2m). (1)

P∗ =
∫ t2

t1

Fdt = λ̂

∫ t2

t1

Fdt (2)

where the period of force application is between t1 and t2. The partial impulse is

P(t) ≡
∫ t

t1

F(t′)dt′ = pP∗

W =
∫

dW =
∫ t2

t1

v · Fdt

=
∫ P∗

0
(v− + P/m︸ ︷︷ ︸

v

) · dP︸︷︷︸
Fdt

1
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(net) Work Energy
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5
6

·
∣∣∣(Mechanical power)

∣∣∣

W =
∫

dW =
∫

Pdt =
∫

F · vdt =
∫

F !̇dt =
∫

Fd!

W = ∆E =
m

2
(
|v+|2 − |v−|2

)

= v− · P∗ + |P∗|2/(2m). (1)

P∗ =
∫ t2

t1

Fdt = λ̂

∫ t2

t1

Fdt (2)

where the period of force application is between t1 and t2. The partial impulse is

P(t) ≡
∫ t

t1

F(t′)dt′ = pP∗

W =
∫

dW =
∫ t2

t1

v · Fdt

=
∫ P∗

0
(v− + P/m︸ ︷︷ ︸

v

) · dP︸︷︷︸
Fdt

=
∫ 1

0

(
v− + pP∗/m

)
· P∗dp

1

TAM Collision talk Equations

Andy Ruina

February 13, 2006
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The partial impulse P, 0<p<1, is
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Relate impulse and work (2 ways)

I. Net change:
II. Integrate:
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Net Work in “Collision” is
 
positive (generated) work   -  negative (absorbed) work.

4. The energy accounting here considers the metabolic

cost of doing work.

Energetics of a single collision. The velocity v− of the

animal the center of mass H is initially at an angle φ−

with a line orthogonal to the nominal leg (see Fig. 2a).

During the absorbing part of the collision, H gets closer

to the nominal foot contact point C and the kinetic energy

decreases. In this portion energy is absorbed by extending

muscles and tendons (as joints flex) as well as by deforma-

tion of other tissues and the ground. Then at the point of

maximum leg compression the distance CH begins to in-

crease, the kinetic energy increases and work is generated

by muscles, tendon recoil, and possibly ground recovery.

In classical mechanics the generation phase is called the

‘restitution’ phase. But some collisions we consider here

have no compression/absorbing phase, and the generating

phase then has nothing to restitute. So we drop the classi-

cal vocabulary. Eventually contact is lost and the animal

H completes the generation phase with velocity v+ at an

angle φ+ with respect to the normal of the nominal leg

orientation. We generally assume that both φ+ and φ−

are non-negative. The net deflection of the path in a sin-

gle collision is

φ = φ− + φ+. (9)

Usually we think of both φ and v− = |v−| as given.
Throughout we are interested in locomotion, that is mo-

tion that is more sideways than up or down. We further

assume that all portions of all trajectories are not far from

level. So we simplify the formulas, at little cost in accu-

racy if the angles are indeed small, by using small angle

approximations: sin φ ≈ φ and cosφ ≈ 1. Similarly
φ+, φ−and φ are assumed small.
Conservation of linear momentum in the direction or-

thogonal to the leg (or, equivalently, angular momentum

balance about the foot contact) demands that v− cosφ− =
v+ cosφ+. Thus, v− ≈ v+ ≈ v. One can think of v as
the average forward speed of the animal. Although the

fluctuations of v are of central interest in the energetics,
they are assumed to be a small fraction of v. The small
velocity variations are made manifest in the energy terms

discussed below.

The energy change is completely accounted for by

changes in the component of velocity normal to the leg

(from the collisional impulse).

∆E = −Ea + Eg (10)

where Ea = m(φ−v)2/2

Eg = m(φ+v)2/2 .

Ea is the energy absorbed in leg shortening and Eg is

the work done by the leg in the generating (lengthening)

phase. Alternatively one may want to calculate the change

in energy from the impulse P∗ where, with the small an-

gle approximation |P∗| = mvφ. Either by re-arranging
Eqs. 9 and 10 and making suitable geometric interpreta-

tions, or by the derivation in the appendix (Eq. 38),

∆E = mv2(−φφ− + φ2/2) = v
− · P∗ + |P∗|2/(2m).

(11)

In a single collision∆E can be positive or negative.

Collision coefficients er and eg. Collisions are com-

monly characterized by the coefficient of restitution

er ≡
(separation speed)

(approach speed)

= v sin φ+/v sin φ− ≈ φ+/φ−.

In the case that φ+ = 0 the collision is equivalent to a
‘perfectly plastic’ (perfectly inelastic, coefficient of ‘resti-

tution’ er = 0) frictionless collision against a surface nor-
mal to the leg. We call such a plastic collision exclusively

absorbing (Fig. 2d).

If φ− = φ+ the collision is kinematically equivalent to

a ‘perfectly elastic’ collision with er = 1 (Fig. 2e). We
call such an kinetic-energy preserving collision a pseudo-

elastic collision; it is elastic in effect, with the amount of

work done equal to the amount previously absorbed. It is

‘pseudo’ elastic because the work in the generation phase

may not be recovered elastic storage. Rather, the positive

work could come in part or full frommuscle work (see the

concept of “pseudo-compliance” in Alexander, 1997).

If φ− = 0 the collision is exclusively generating

(Fig. 2f). This is a classically ignored ‘super-elastic’ case

with er = ∞. Its like a backwards-run movie of clay
hitting the floor. This er = ∞ case cannot be ignored

here because muscles can do work even with no previous

negative-work phase.

7

More assumptions:
• Leg is close to vertical
• Motion is close to horizontal
• Speed is close to constant
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One shallow angle collision:

Spread in time

Impulse

Leg

Leg
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animal the center of mass H is initially at an angle φ−

with a line orthogonal to the nominal leg (see Fig. 2a).

During the absorbing part of the collision, H gets closer

to the nominal foot contact point C and the kinetic energy

decreases. In this portion energy is absorbed by extending

muscles and tendons (as joints flex) as well as by deforma-

tion of other tissues and the ground. Then at the point of

maximum leg compression the distance CH begins to in-

crease, the kinetic energy increases and work is generated

by muscles, tendon recoil, and possibly ground recovery.

In classical mechanics the generation phase is called the

‘restitution’ phase. But some collisions we consider here

have no compression/absorbing phase, and the generating

phase then has nothing to restitute. So we drop the classi-

cal vocabulary. Eventually contact is lost and the animal

H completes the generation phase with velocity v+ at an

angle φ+ with respect to the normal of the nominal leg

orientation. We generally assume that both φ+ and φ−

are non-negative. The net deflection of the path in a sin-

gle collision is

φ = φ− + φ+. (9)

Usually we think of both φ and v− = |v−| as given.
Throughout we are interested in locomotion, that is mo-

tion that is more sideways than up or down. We further

assume that all portions of all trajectories are not far from

level. So we simplify the formulas, at little cost in accu-

racy if the angles are indeed small, by using small angle

approximations: sin φ ≈ φ and cosφ ≈ 1. Similarly
φ+, φ−and φ are assumed small.
Conservation of linear momentum in the direction or-

thogonal to the leg (or, equivalently, angular momentum

balance about the foot contact) demands that v− cosφ− =
v+ cosφ+. Thus, v− ≈ v+ ≈ v. One can think of v as
the average forward speed of the animal. Although the

fluctuations of v are of central interest in the energetics,
they are assumed to be a small fraction of v. The small
velocity variations are made manifest in the energy terms

discussed below.

The energy change is completely accounted for by

changes in the component of velocity normal to the leg

(from the collisional impulse).

∆E = −Ea + Eg (10)

where Ea = m(φ−v)2/2

Eg = m(φ+v)2/2 .

Ea is the energy absorbed in leg shortening and Eg is

the work done by the leg in the generating (lengthening)

phase. Alternatively one may want to calculate the change

in energy from the impulse P∗ where, with the small an-

gle approximation |P∗| = mvφ. Either by re-arranging
Eqs. 9 and 10 and making suitable geometric interpreta-

tions, or by the derivation in the appendix (Eq. 38),

∆E = mv2(−φφ− + φ2/2) = v
− · P∗ + |P∗|2/(2m).

(11)

In a single collision∆E can be positive or negative.

Collision coefficients er and eg. Collisions are com-

monly characterized by the coefficient of restitution

er ≡
(separation speed)

(approach speed)

= v sin φ+/v sin φ− ≈ φ+/φ−.

In the case that φ+ = 0 the collision is equivalent to a
‘perfectly plastic’ (perfectly inelastic, coefficient of ‘resti-

tution’ er = 0) frictionless collision against a surface nor-
mal to the leg. We call such a plastic collision exclusively

absorbing (Fig. 2d).

If φ− = φ+ the collision is kinematically equivalent to

a ‘perfectly elastic’ collision with er = 1 (Fig. 2e). We
call such an kinetic-energy preserving collision a pseudo-

elastic collision; it is elastic in effect, with the amount of

work done equal to the amount previously absorbed. It is

‘pseudo’ elastic because the work in the generation phase

may not be recovered elastic storage. Rather, the positive

work could come in part or full frommuscle work (see the

concept of “pseudo-compliance” in Alexander, 1997).

If φ− = 0 the collision is exclusively generating

(Fig. 2f). This is a classically ignored ‘super-elastic’ case

with er = ∞. Its like a backwards-run movie of clay
hitting the floor. This er = ∞ case cannot be ignored

here because muscles can do work even with no previous

negative-work phase.

7
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eg  = -1 eg  = 0 eg  = 1

coefficient  of  generation

Thus, to avoid use of ∞ in formulas, we introduce a

new collision coefficient, the coefficient of generation eg,

eg ≡
(separation speed)-(approach speed)

(separation speed)+(approach speed)

=
er − 1

er + 1
≈

φ+ − φ−

φ
. (12)

Inversely, er = (1+ eg)/(1− eg). The coefficient of gen-
eration eg respects the symmetry between an exclusively

absorbing collision (eg = −1,φ+ = 0) and a exclusively
generating collision (eg = 1, φ− = 0). For the energeti-
cally neutral pseudo-elastic collision eg = 0 (φ− = φ+.

For intermediate cases the pre- and post-collision angles

can be calculated from the net collision angle φ and the
coefficient of generation eg by φ+ = (1 + eg)φ/2 and
φ− = (1 − eg)φ/2. From Eq. 10,

∆E = mv2φ2eg/2. (13)

Thus another interpretation of the coefficient of genera-

tion eg is as the ratio of the collisional energy gain to that

which would be lost for the same angular deflection in a

totally plastic (dead, absorbing) collision with the same v
and φ. That is, eg = ∆E/(mv2φ2/2).

Elastic recovery r. Although the current discussion

considers both active (muscle-determined) and passively

mediated absorption and restitution, the terminology can

be related to more commonly considered elastic behavior.

The classical concept of elastic recovery is characterized

by

r ≡ fraction of Ea stored and used for Eg. (14)

Thus the total positive muscle work during the collision,

excluding the positive work contributed by parallel and

series elastic components, is Eg − rEa. The sum of dis-

sipation and negative muscle work (excluding work ab-

sorbed by elastic tissue to be returned later) during the

collision is given by Ea − rEa. The elastic recovery r is
an extra parameter that needs to be specified in order to

calculate the metabolic cost of collisions. A truly elastic

collision (eg = 0, r = 1) is kinematically identical to a
pseudo-elastic collision (eg = 0, r = 0) where all incom-
ing energy is lost but replaced by positive muscle work.

Because we do not imagine elastic storage being used for

anything but the subsequent generative phase, it is sensi-

ble to assume that for every collision or sub-collision that

rEa ≤ Eg so r ≤ Eg/Ea or r ≤ (1 + eg)2/(1 − eg)2.

Inferred energetic cost of a gait cycle with exactly one

collision. A gait might involve positive and negative

muscle work not only during collisions but also between

collisions. The overall energy balance equation e.g., Eq. 3

concerns all of this work. In particular if Eg > Ea then

at least some negative work or other dissipation is needed

in a non-collisional part of the gait cycle. On the other

hand, if Eg < Ea then at least some positive work need

be done in a non-collisional part of the gait cycle. We take

the inferred energetic cost of collision over a gait cycle to

be the minimum possible cost based on the minimum pos-

itive work in the cycle, taking account that some positive

work might have to be done between collisions in order to

conserve energy.

The energy change across a collision∆E = Eg−Ea =
(Eg − rEa) − (Ea − rEa) = (positive muscle work) -

|(negative muscle work)| can be negative, zero or posi-
tive. When ∆E < 0, the positive muscle work during the
collision Eg − rEa is less than the negative muscle work

and dissipation Ea − rEa. For energy balance over the

whole gait cycle, the total positive work over the whole

gait cycle (including that accounted for by the collision)

must at least be Ea − rEa. Thus, for ∆E < 0 a lower
bound on the total metabolic cost of a gait cycle is that in-

ferred from the negative muscle work during a collision.

Using the small angle approximationwith Eqs. 10 and 14,

the inferred collisional metabolic cost per gait cycle Em

when∆E ≤ 0 (and eg ≤ 0) is:

Em

b
= Ea − rEa = (1 − r)Ea

=
(φ−)2v2m

2
(1 − r)

=
φ2v2m

8
(1 − r)(1 − eg)

2. (15)

Similarly, when ∆E ≥ 0 (and eg ≥ 0), the total inferred
metabolic cost during the whole gait cycle is at least that

due to the positive muscle work during collision. So the

necessary inferred metabolic cost of collision per gait cy-

cle is

Em

b
= Eg − rEa

8

eg  =
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to upwards motion is accomplished with an impact free

mechanism, and 2) the making of contact with the hand-

holds is at near-zero relative velocity, also minimizing im-

pact losses. For ricochetal locomotion collisional dissipa-

tion shows its importance not by the energy it demands,

but by its avoidance.

Can an animal swing against the ground? It is puz-

zling that gibbons can ‘run’, albeit sort of upside-down,

with no dissipative collisional impacts, but that right-

side-up legged locomotion seems tied to collisional loss.

Are there corresponding collisional-loss reduction mech-

anisms for running right-side-up? Of course the obvious

answer is yes, “springs” (e.g., Alexander 1990). But be-

cause animal limbs are not passive elastic springs (ap-

parent leg elasticity is achieved with at least some mus-

cle work). A motivation for the present research was a

hope of finding dissipation reduction schemes that, like

the dissipation-avoidance schemes used by gibbons, are

not tied to material elasticity.

The point-mass compressional-leg

glancing collision model

Before we can discuss howmetabolic costs of locomotion

can be reduced, we first present our collisional model for

calculating some of these costs. This collisional model

allows simple approximate calculation of costs associated

with leg forces that, when viewed in detail, are smooth

and non-impulsive. All later discussions of biologically-

relevant cost-reduction mechanisms are based on the for-

mulas developed in this section.

We approximate the body as a point mass and the leg

as a massless strut that can only transmit forces along

its axis (that is, for most of the discussion we neglect

hip and shoulder torques during the collision). For cal-

culations we assume, consistent with the assumption of

short contact time, that during a collision gravity forces

are negligible and that the leg angle changes negligibly.

Within this context, our overall model of locomotion is

of smooth flight or stance phases punctuated by sudden

velocity changes caused by impulsive leg forces.

Our collisional model is similar to the “compression-

restitution” model of point-mass collisions discussed in
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Figure 2: The glancing collision model. (a) A particle collides
with the ground through a single leg with a net deflection angle

of φ = φ+ + φ−. The force F during the collision comes from

the leg whose direction is approximated as constant λ̂ during

the collision. (b) The net impulse of one leg on the mass m is

P
∗. (c) The same collision viewed at a coarser scale where the

details of the collisional interaction are not shown. (d) A point-

mass has an exclusively absorbing (perfectly plastic) collision.

(e)A point-mass has a pseudo-elastic collision. (f)A point-mass

has an exlusively generating collision.

elementary mechanics books but with 4 differences:

1. Here we have an emphasis on glancing, shallow an-

gle collisions rather than normal (direct) impact,

2. Here we take account that biomechanical collisions

need not cause a reduction in system kinetic energy.

In classical mechanics, a collision typically refers to

a purely passive, dissipative interaction between two

objects which approached each other rapidly. Here

a collision can involve both purely passive mecha-

nisms and actively muscular mechanisms. Collisions

here can increase kinetic energy. In this sense, these

collisions are a generalization of conventional pas-

sive collisions.

3. Here we look at one collisional episode as possibly

made up of a sequence of sub-collisions, and

6

The collision model
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Figure 5: Various collisional models for the step-to-step transition in walking. The hodographs show candidate trajectories for
the tip of the velocity vector, during collision, as it moves from v

− to v
+. All are for walking models with collisional impulses

from two legs. Several cases are shown. (i) In passive-dynamic downhill walking, there is only impulse along the new stance

leg. This case is the same for walking as for passive running with a dead leg. At every instant on path AC dW = mv · dv < 0
and the collision is exclusively absorbing (the length of v is decreasing throughout). The work required to make-up the length

of v+ (path CB) is supplied by gravity. An energetically equivalent model has power supplied by the trailing old stance leg after

motion is constrained to the new stance arc. (ii) In the toe-off then heel-strike model of walking there is a purely generative phase

with a force along the old stance leg, followed by a purely absorbing heel-strike phase along the new stance leg. (iii) Using only

impulses from the two legs the vertical path requires overlapping impulses. (iv) The least energetically favorable collision using

two compressional impulses along the legs, in which the heel-strike impulse is complete before push-off starts. (v) In the new

pseudo-elastic model proposed here there are two branches. One along the virtual leg from hip to toe (φ/4 forward of the rear
leg) and one along the virtual leg from hip to heel (φ/4 behind the front leg). This path is the minimum-cost two-leg simultaneous
collision for given φ. (vi) A trajectory of constant energy. This trajectory has precisely zero ‘external work’ yet requires leg work.
Path (vi) can be traversed at no energy cost using a (slightly) rounded foot whose length is the step length.

r = 0, eg = −1,

Em = bφ2v2m/2. (26)

This corresponds with path (i) on the hodograph of Fig. 5,

the most costly model for walking.

Active collision reduction: Push-off preceeding heel-

strike. As mentioned in Tucker (1975) and again in

McGeer (1993), the collisional cost of walking can be

reduced by preceding the absorbing heel-strike collision

with a push-off (plantar extension) which we model as a

generative collision. At a given speed and step length the

collisional cost can be reduced by a factor of 4 this way

(Kuo, 2002).

Using the formalism here we can look at a sequence of

two collisions with φ1 = φ2 = φ/2. The first is a purely

generative push-off collision with eg1 = 1 and the sec-
ond a purely absorbing collision with eg2 = −1. Using
Eqs. 15, 16 and 17 and ri = 0,

Em = bφ2v2m/8 (27)

giving, comparing with Eq. 26, a factor of 4 reduction in

cost as compared to passive walking. Pushoff before heel-

strike is shown as path (ii) on Fig. 5. For given φ this two
leg walking collision is energetically identical to a single-

leg pseudo-elastic collision (see Eq. 24). Both have gen-

erating and absorbing phases with deflection angle φ/2.
For walking, however, the ‘restitution’ occurs before the

absorption.

There are a few ways to understand the efficiency gain

of using pushoff before heelstrike as compared to the

purely passive, rimless-wheel collision. By pushing off

before heel-strike the collision loss at heel strike is re-
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Figure 3: (a) Collisional pseudo-elastic version of ’pogo-stick’
(mass-spring) running, (b) Downhill passive running with no

springs (plastic eg = −1 collisions), energetically 4 times

as costly as (a), even if (a) has no elastic recovery (r = 0),
(c) Level-ground running propelled by hip torque, energetically

identical to (b). (d) Hodographs show candidate trajectories for

the tip of the velocity vector, during collision, as it moves from

v
− to v

+. Two cases are shown: (i) corresponding to pseudo-

elastic running, and (ii) corresponding to hip-powered running.

n sub-collisions have 1/n2 the energy associated with it.

So the total energy cost is that of n collisions each with
1/n2 the cost.

An infinite sequence of plastic sub-collisions can pro-

duce one elastic collision. Now we take the n → ∞
limit of the previous result. Using Eqn. 20 we see that

both the cost of collisionEm and the energy lost

−∆E in the collision tend to zero with increas-

ing n.

This holds for arbitrary collision parameters including

totally plastic collisions (egi = −1) with no recovery
(ri = 0). As an aside note, perhaps surprisingly, that a
sequence of super-elastic collisions eg = 1 also tends to-
wards an energetically neutral collision as the number of

sub-collisions gets large.

The collisional cost of transport for a point mass run-

ner. An estimate can be generated from the prinicples

described above for that protion of human running cost

that is derived from collisional loss. The presentation here

is an extension of that given in Bekker (1956) and Ra-

shevsky (1948). Consider running as a point mass colli-

sion followed by a parabolic flight followed by a collision,

etc. We take the nominal (nearly constant) forward speed

as v. Various cases of this model of running are pictured
in Fig. 3.

The time of flight and distance per stride are T = φv/g
and d = vT (Fig. 3). From Eq. 15, assuming eg ≤ 0, and
Eq. 7 we have

Em/(bT ) =
φ2v2m

8T
(1 − r)(1 − eg)

2

= φvmg(1 − r)(1 − eg)
2/8

= dg2m(1 − r)(1 − eg)
2/(8v)

cm = b
Em/T

mgv
= b

dg(1 − r)(1 − eg)2

8v2

= b(1 − r)(1 − eg)
2F̂/16. (21)

The Froude-like number

F̂ = (2gd)/v2 =
mgd

mv2/2
. (22)

is based on stride length d rather than the usual ". F̂ is

the ratio of the locomotion credit per step (weight × step

length = mgd) to the kinetic energy (mv2/2). The usual
Froude number F ≡

√

v2/g" does not simplify the colli-
sional formulas here. Now we can compare running with-

out and then with emulating a spring with the legs.

Passive running with no springs may be like hip-

powered running. Although apparantly a silly idea, we

can imagine a passive runner with no springs and no

spring like behavior. This (Fig. 3b) is the running analog

to the springless passive-dynamic walkers. Such a runner

has a plastic collision (er = 0, eg = −1) at each foot-
fall. As mentioned above, because of the tipped leg the

collision in some ways appears elastic, with the relative-

to-ground angle of incidence equal to the angle of reflec-

tion. For this generation-free case there is no place to use

recovery, so r = 0. From Eq. 21 the collisional cost is

cm = b
Em/T

mgv
= b

dg

2v2
= bF̂/4. (23)
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Figure 5: Various collisional models for the step-to-step transition in walking. The hodographs show candidate trajectories for
the tip of the velocity vector, during collision, as it moves from v

− to v
+. All are for walking models with collisional impulses

from two legs. Several cases are shown. (i) In passive-dynamic downhill walking, there is only impulse along the new stance

leg. This case is the same for walking as for passive running with a dead leg. At every instant on path AC dW = mv · dv < 0
and the collision is exclusively absorbing (the length of v is decreasing throughout). The work required to make-up the length

of v+ (path CB) is supplied by gravity. An energetically equivalent model has power supplied by the trailing old stance leg after

motion is constrained to the new stance arc. (ii) In the toe-off then heel-strike model of walking there is a purely generative phase

with a force along the old stance leg, followed by a purely absorbing heel-strike phase along the new stance leg. (iii) Using only

impulses from the two legs the vertical path requires overlapping impulses. (iv) The least energetically favorable collision using

two compressional impulses along the legs, in which the heel-strike impulse is complete before push-off starts. (v) In the new

pseudo-elastic model proposed here there are two branches. One along the virtual leg from hip to toe (φ/4 forward of the rear
leg) and one along the virtual leg from hip to heel (φ/4 behind the front leg). This path is the minimum-cost two-leg simultaneous
collision for given φ. (vi) A trajectory of constant energy. This trajectory has precisely zero ‘external work’ yet requires leg work.
Path (vi) can be traversed at no energy cost using a (slightly) rounded foot whose length is the step length.

r = 0, eg = −1,

Em = bφ2v2m/2. (26)

This corresponds with path (i) on the hodograph of Fig. 5,

the most costly model for walking.

Active collision reduction: Push-off preceeding heel-

strike. As mentioned in Tucker (1975) and again in

McGeer (1993), the collisional cost of walking can be

reduced by preceding the absorbing heel-strike collision

with a push-off (plantar extension) which we model as a

generative collision. At a given speed and step length the

collisional cost can be reduced by a factor of 4 this way

(Kuo, 2002).

Using the formalism here we can look at a sequence of

two collisions with φ1 = φ2 = φ/2. The first is a purely

generative push-off collision with eg1 = 1 and the sec-
ond a purely absorbing collision with eg2 = −1. Using
Eqs. 15, 16 and 17 and ri = 0,

Em = bφ2v2m/8 (27)

giving, comparing with Eq. 26, a factor of 4 reduction in

cost as compared to passive walking. Pushoff before heel-

strike is shown as path (ii) on Fig. 5. For given φ this two
leg walking collision is energetically identical to a single-

leg pseudo-elastic collision (see Eq. 24). Both have gen-

erating and absorbing phases with deflection angle φ/2.
For walking, however, the ‘restitution’ occurs before the

absorption.

There are a few ways to understand the efficiency gain

of using pushoff before heelstrike as compared to the

purely passive, rimless-wheel collision. By pushing off

before heel-strike the collision loss at heel strike is re-
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Balanced with gravitational energy supply.
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Hodograph: trajectory of tip of velocity vector
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Energy saving trick for walking:

Pushoff with trailing leg (eg = +1)

then land on leading leg (eg = -1)
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Energy saving trick for running:

Absorb first 

then push off (net eg = 0)
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Pseudo-elastic collision (no real elasticity).
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Figure 7: (a) The three-pseudo-elastic-collions model of the horse gallop. (b) schematic strobe of a horse shows mid-contact
of the trailing rear limb (first contact, unshaded), contralateral lead rear and trailing fore limbs (contact together in canter, light

shading) and lead fore limb (last contact prior to non-contact flight phase, dark shading). Arrows indicate measured (Merkins et al.

1993) average ground reaction force for the contact of each limb (shading matches corresponding image). The nearly simultaneous

midfeet ground contacts (the two lightly-shaded arrows) correspond to the middle of the three feet in (a). (c) Center-of-mass

horizontal velocity vx and height fluctuations h for a small horse galloping at 6.83 m/s (redrawn from Minetti et al., 1999). Two
complete strides are illustrated (one data set cut and pasted) with corresponding approxiamte footfall timing (as per Fig. 1). The

first contact after the flight phase occurs with the right rear (RR) limb. Horizontal velocity initially decreases slightly, but increases

substantially over this limb’s contact time. Meanwhile h decreases. Contact of the diagonal pair of left rear (LR) and right front
(RF) limbs also causes a transient decrease and increase in vx. During this second contact phase the h reaches its minimum height.
Finally the left front (LF) ‘lead’ (pronounced leed) limb makes contact and vx decreases, bringing the instantaneous forward speed

to the lowest in the gait cycle. During the lead-limb contact h increases as the animal vaults into the next flight phase. During each
limb contact a horizontal deceleration and reacceleration occurs which is duplicated by a decrease and then increase in the total

energy (not shown here). (Note, with better measurement the vx curve would be more constant during the flight phases.)

the mass-spring model predicts the opposite, that

mid-stance is the time of minimum forward velocity.

The horse canter is also the opposite of the normal

spring-mediated-running paradigm for the phasing

of kinetic and potential energy. Rather, the horse’s

energy phasing is like that of human walking, as pre-

dicted by the sequential collision model here.

• The legs make contact from rear to front, not simul-
taneously as in a pronk. This is clear in Figs. 1 and 7.

Although our point-mass model cannot distinguish

front legs from rear legs, the analogy with the rolling

egg (Fig. 4) suggests that extended-body considera-

tions make landing on the rear most appropriate. In

particular, because the first contacting leg has a pri-

marily forwards force, its moment about the center-

of-mass is less if it is applied at the rear of the horse.

Similarly the moment of the rearwards force of the

last-contacting leg is less if applied at the front of

the horse.

• The fluctuations in vx, shown in Fig. 7, closely

mimic the fluctuations in the total energy (not

shown). The three-dip-per-stride pattern thus shows

that each leg absorbs and then returns energy (with

the rear leg a bit stronger on the generative part and

the front a bit stronger on the absorption). The colli-

sional model predicts that such pseudo-elasticity is

energetically advantageous (independent of recov-

ery).

Overall, it seems, horses use a combination of two strate-

gies discussed here. On the one hand they mimic the

brachiation swing with a sequence of collisions. On the

other, they make each of those collisions close to pseudo-

elastic.

The metabolic energy of running horses has been rela-

tively well studied (Hoyt and Taylor, 1981, Eaton et al.,

1995, Potard et al., 1998, Langsetmo et al., 1997, Butler

et al., 1993, Wagner et al., 1989, Minetti, 1999). Minetti

et al. (1999) reports data from a horse cantering at about

v = 7 m/s with a stride frequency of about f = 1/0.6s.
Minetti et al. also report a rate of chemical energy expen-

diture of between 2 and 3 J/kg·m. Using g ≈ 10m/s2 this
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Two morals:
   1) A sequence of collisions uses less energy 
       than a single collision (for given deflection angle)
   II) A pseudo-elastic collision uses less energy 
      than a plastic collision.

Horse gallop:  Seems to use both systems:
Ba-duh-dump  ba-duh-dump
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Figure 4: (a) The point-mass ricochetal brachiation model from (Bertram et al., 1999). The dots show the body trajectory. The

motion alternates between flight and an effective bounce at the branch-holding swing phase. There is no collision loss if the flight

trajectory is tangent to the circular swing path at the transition. (b) A particle sliding on a frictionless corrugated surface can have

motions identical to those in (a). The corrugated surface can be simulated by an infinite number of massless legs which contact in

sequence. Each leg is orthogonal to the path and produces only an infinitesimal collision. Note, to match the path the legs have

various lengths. (c) A football-like body can bounce with no elasticity if its rotation and downwards translation are phased so that

ground contact point has zero velocity just before contact. The center-of-mass motion is shown as a dotted line. (d) If launched

with the right spin, a sphere with an eccentric center-of-mass can hop on a rigid frictionless substrate, even with no elasticity.

of substantial social and economic importance to the his-

tory of human civilization. Consideration of collisional

cost provides insight into the functional advantage of us-

ing this gait at high speeds. However, before applying the

collisional model to the horse gallop it is useful to discuss

some motivational analogies.

Galloping as sliding on a bumpy surface. We initiated

this research project by looking for a ground-support ver-

sion of ricochetal brachiation (Fig. 4a). Fig. 4b illustrates

such a system. A point-mass slides on and skips over a

frictionless corrugated surface. For both models the free-

flight and sliding motion paths are tangent at the time of

contact and there is no collisional dissipation.

Now we try to implement the idea using legs. As is

intuitively acceptable and demonstrated by Eq. 20 an in-

finite number of infinitesimal glancing collisions, even if

each is fully plastic, is equivalent to frictionless sliding.

The right part of Fig. 4b shows that the frictionless sur-

face could be simulated by an infinite number of massless

legs each orthogonal to the path of the point-mass and

each providing a compressional force along the leg. That

is, a sequence of concave-down parabolic arcs approxi-

mates a polygon. The long hindmost leg lands first and

the sequence of collisions proceeds through shorter and

then longer legs to final lift-off mediated by the long fore-

most leg.

Assume a spherical horse. Even without a corrugated

frictionless surface or an infinite number of varying-

length legs, an oval-shaped rigid body can effectively

bounce off a rigid flat surface without elastic recoil

(Fig. 4c). The occasional high bounce of an end-over-end

tumbling rugby or American football seems to roughly il-

lustrate this phenomenon. In flight the lower-most point

of the football oscillates up and down relative to the cen-

ter of mass. With the right timing such a retraction can

exactly cancel the downwards center of mass motion and

the lower surface will touch the ground with zero down-

wards velocity. If the horizontal motion is also matched

then the new contact is made with zero relative velocity.

With no velocity discontinuity at contact there is no colli-

sional dissipation. After a brief roll, the hop up proceeds

with no energy loss.

The analytic treatment of such a dissipation-free yet in-

elastic collision is simplest with the vertical bouncing of

a frictionless ball or sphere that has an eccentric center-

of-mass, as discussed in Haggerty (2001). To make this

bouncing more like locomotion, a uniform horizontal mo-

tion can be superposed to the center of mass motion so

13

Relation between brachiation and galloping
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motions identical to those in (a). The corrugated surface can be simulated by an infinite number of massless legs which contact in

sequence. Each leg is orthogonal to the path and produces only an infinitesimal collision. Note, to match the path the legs have

various lengths. (c) A football-like body can bounce with no elasticity if its rotation and downwards translation are phased so that

ground contact point has zero velocity just before contact. The center-of-mass motion is shown as a dotted line. (d) If launched

with the right spin, a sphere with an eccentric center-of-mass can hop on a rigid frictionless substrate, even with no elasticity.

of substantial social and economic importance to the his-

tory of human civilization. Consideration of collisional

cost provides insight into the functional advantage of us-

ing this gait at high speeds. However, before applying the

collisional model to the horse gallop it is useful to discuss

some motivational analogies.

Galloping as sliding on a bumpy surface. We initiated

this research project by looking for a ground-support ver-

sion of ricochetal brachiation (Fig. 4a). Fig. 4b illustrates

such a system. A point-mass slides on and skips over a

frictionless corrugated surface. For both models the free-

flight and sliding motion paths are tangent at the time of

contact and there is no collisional dissipation.

Now we try to implement the idea using legs. As is

intuitively acceptable and demonstrated by Eq. 20 an in-

finite number of infinitesimal glancing collisions, even if

each is fully plastic, is equivalent to frictionless sliding.

The right part of Fig. 4b shows that the frictionless sur-

face could be simulated by an infinite number of massless

legs each orthogonal to the path of the point-mass and

each providing a compressional force along the leg. That

is, a sequence of concave-down parabolic arcs approxi-

mates a polygon. The long hindmost leg lands first and

the sequence of collisions proceeds through shorter and

then longer legs to final lift-off mediated by the long fore-

most leg.

Assume a spherical horse. Even without a corrugated

frictionless surface or an infinite number of varying-

length legs, an oval-shaped rigid body can effectively

bounce off a rigid flat surface without elastic recoil

(Fig. 4c). The occasional high bounce of an end-over-end

tumbling rugby or American football seems to roughly il-

lustrate this phenomenon. In flight the lower-most point

of the football oscillates up and down relative to the cen-

ter of mass. With the right timing such a retraction can

exactly cancel the downwards center of mass motion and

the lower surface will touch the ground with zero down-

wards velocity. If the horizontal motion is also matched

then the new contact is made with zero relative velocity.

With no velocity discontinuity at contact there is no colli-

sional dissipation. After a brief roll, the hop up proceeds

with no energy loss.

The analytic treatment of such a dissipation-free yet in-

elastic collision is simplest with the vertical bouncing of

a frictionless ball or sphere that has an eccentric center-

of-mass, as discussed in Haggerty (2001). To make this

bouncing more like locomotion, a uniform horizontal mo-

tion can be superposed to the center of mass motion so
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Figure 4: (a) The point-mass ricochetal brachiation model from (Bertram et al., 1999). The dots show the body trajectory. The

motion alternates between flight and an effective bounce at the branch-holding swing phase. There is no collision loss if the flight

trajectory is tangent to the circular swing path at the transition. (b) A particle sliding on a frictionless corrugated surface can have

motions identical to those in (a). The corrugated surface can be simulated by an infinite number of massless legs which contact in

sequence. Each leg is orthogonal to the path and produces only an infinitesimal collision. Note, to match the path the legs have

various lengths. (c) A football-like body can bounce with no elasticity if its rotation and downwards translation are phased so that

ground contact point has zero velocity just before contact. The center-of-mass motion is shown as a dotted line. (d) If launched

with the right spin, a sphere with an eccentric center-of-mass can hop on a rigid frictionless substrate, even with no elasticity.

of substantial social and economic importance to the his-

tory of human civilization. Consideration of collisional

cost provides insight into the functional advantage of us-

ing this gait at high speeds. However, before applying the

collisional model to the horse gallop it is useful to discuss

some motivational analogies.

Galloping as sliding on a bumpy surface. We initiated

this research project by looking for a ground-support ver-

sion of ricochetal brachiation (Fig. 4a). Fig. 4b illustrates

such a system. A point-mass slides on and skips over a

frictionless corrugated surface. For both models the free-

flight and sliding motion paths are tangent at the time of

contact and there is no collisional dissipation.

Now we try to implement the idea using legs. As is

intuitively acceptable and demonstrated by Eq. 20 an in-

finite number of infinitesimal glancing collisions, even if

each is fully plastic, is equivalent to frictionless sliding.

The right part of Fig. 4b shows that the frictionless sur-

face could be simulated by an infinite number of massless

legs each orthogonal to the path of the point-mass and

each providing a compressional force along the leg. That

is, a sequence of concave-down parabolic arcs approxi-

mates a polygon. The long hindmost leg lands first and

the sequence of collisions proceeds through shorter and

then longer legs to final lift-off mediated by the long fore-

most leg.

Assume a spherical horse. Even without a corrugated

frictionless surface or an infinite number of varying-

length legs, an oval-shaped rigid body can effectively

bounce off a rigid flat surface without elastic recoil

(Fig. 4c). The occasional high bounce of an end-over-end

tumbling rugby or American football seems to roughly il-

lustrate this phenomenon. In flight the lower-most point

of the football oscillates up and down relative to the cen-

ter of mass. With the right timing such a retraction can

exactly cancel the downwards center of mass motion and

the lower surface will touch the ground with zero down-

wards velocity. If the horizontal motion is also matched

then the new contact is made with zero relative velocity.

With no velocity discontinuity at contact there is no colli-

sional dissipation. After a brief roll, the hop up proceeds

with no energy loss.

The analytic treatment of such a dissipation-free yet in-

elastic collision is simplest with the vertical bouncing of

a frictionless ball or sphere that has an eccentric center-

of-mass, as discussed in Haggerty (2001). To make this

bouncing more like locomotion, a uniform horizontal mo-

tion can be superposed to the center of mass motion so
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Somewhat odd result: 

    An infinite number of infinitely small collisions, 
    each “orthogonal”  to the path,
    tends to perfectly elastic, 
    no matter the nature of the individual collisions 
    (plastic or generative or in-between).
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various lengths. (c) A football-like body can bounce with no elasticity if its rotation and downwards translation are phased so that

ground contact point has zero velocity just before contact. The center-of-mass motion is shown as a dotted line. (d) If launched

with the right spin, a sphere with an eccentric center-of-mass can hop on a rigid frictionless substrate, even with no elasticity.
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some motivational analogies.
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this research project by looking for a ground-support ver-

sion of ricochetal brachiation (Fig. 4a). Fig. 4b illustrates

such a system. A point-mass slides on and skips over a
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Now we try to implement the idea using legs. As is

intuitively acceptable and demonstrated by Eq. 20 an in-
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The right part of Fig. 4b shows that the frictionless sur-

face could be simulated by an infinite number of massless

legs each orthogonal to the path of the point-mass and

each providing a compressional force along the leg. That

is, a sequence of concave-down parabolic arcs approxi-

mates a polygon. The long hindmost leg lands first and

the sequence of collisions proceeds through shorter and

then longer legs to final lift-off mediated by the long fore-

most leg.

Assume a spherical horse. Even without a corrugated

frictionless surface or an infinite number of varying-

length legs, an oval-shaped rigid body can effectively

bounce off a rigid flat surface without elastic recoil

(Fig. 4c). The occasional high bounce of an end-over-end

tumbling rugby or American football seems to roughly il-

lustrate this phenomenon. In flight the lower-most point

of the football oscillates up and down relative to the cen-

ter of mass. With the right timing such a retraction can

exactly cancel the downwards center of mass motion and

the lower surface will touch the ground with zero down-

wards velocity. If the horizontal motion is also matched

then the new contact is made with zero relative velocity.

With no velocity discontinuity at contact there is no colli-

sional dissipation. After a brief roll, the hop up proceeds

with no energy loss.

The analytic treatment of such a dissipation-free yet in-

elastic collision is simplest with the vertical bouncing of

a frictionless ball or sphere that has an eccentric center-

of-mass, as discussed in Haggerty (2001). To make this

bouncing more like locomotion, a uniform horizontal mo-
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“Simultaneous” collisions
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Figure 9: A point-mass is acted upon by two impulses P
∗

1

and P
∗

2 which accumulate in time as P1(t) = p(t)P∗

1 and

P2(t) = q(t)P∗

2. The area under a cross plot of q vs p de-
fines an overlap parameter so which is 0.5 if the impulses are

truly simultaneous. The parameter allows the calculation of the

impulse work in Eq. 41. The various paths in the p− q plane are
labeled to correspond with the paths in Fig. 5.

entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
velocity v− and both collisional impulses,P∗

1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we

can calculate the net work as

mv
+ = mv

− + P
∗

1 + P
∗

2

W = ∆E =
m

2

(

(v+)2 − (v−)2
)

. (39)

For the cases of main interest we can assume that each

impulse only does work with one sign. For definiteness

assume P∗

1 is totally generative and P∗

2 is totally absorb-

ing

W1 ≥ 0 : v
− · λ̂1 ≥ 0 and v

+ · λ̂1 ≥ 0

W2 ≤ 0 : v
− · λ̂2 ≤ 0 and v

+ · λ̂2 ≤ 0.

SoW in Eqn. 39 is

W = |W2|− |W1| (40)

where W1 and W2 are the work generated by, and ab-

sorbed by the two impulsive forces. However, the sep-

arate works cannot be determined. That is, unlike the

case of a single impulse, the collisional energetics is not

fully determined by knowledge of the two impulses. We

will now reduce this indeterminacy to a single parameter,

0 ≤ so ≤ 1 which characterizes how much overlap there
is between the nominally simultaneous impulses.

Duplicating the notation and argument used for

Eqn. 38, using 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 to parame-
terize the partial impulsesP1 = pP∗

1 and P2 = qP∗

1, we

can calculate

W1 =

∫

dW1 =

∫ t2

t1

v ·F1dt (41)

=

∫ P
∗

1

0

(v− + (P1 + P2)/m) · dP1

=

∫ 1

0

(

v
− + (pP∗

1 + qP∗

2)/m
)

·P∗

1dp

= v
− ·P∗

1

∫ 1

0

dp +
P∗

1 · P∗

1

m

∫ 1

0

pdp

+
P∗

1 · P∗

2

m

∫ 1

0

qdp
︸ ︷︷ ︸

so

= v
− ·P∗

1 + |P∗

1|2/(2m) + (P∗

1 ·P∗

2)so/m

Similarly,

W2 = v
− ·P∗

2 + |P∗

2|2/(2m)+P
∗

1 ·P∗

2(1−so)/m (42)

The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be

the impulse from the trailing old stance foot and P∗

2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗

1 = 0,v− · P∗

2 = −mv2φ2/2, and
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entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
velocity v− and both collisional impulses,P∗

1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we

can calculate the net work as
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∗
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For the cases of main interest we can assume that each
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case of a single impulse, the collisional energetics is not
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The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be

the impulse from the trailing old stance foot and P∗

2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗

1 = 0,v− · P∗

2 = −mv2φ2/2, and
|P∗

1|2 = |P∗
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2 = m2v2φ2/4.
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entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
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1 andP∗

2 are
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SoW in Eqn. 39 is

W = |W2|− |W1| (40)
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0 ≤ so ≤ 1 which characterizes how much overlap there
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The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be

the impulse from the trailing old stance foot and P∗

2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗

1 = 0,v− · P∗

2 = −mv2φ2/2, and
|P∗

1|2 = |P∗

2|2 = P∗

1 · P∗

2 = m2v2φ2/4.
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entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
velocity v− and both collisional impulses,P∗

1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we

can calculate the net work as

mv
+ = mv

− + P
∗

1 + P
∗

2

W = ∆E =
m

2

(

(v+)2 − (v−)2
)

. (39)

For the cases of main interest we can assume that each

impulse only does work with one sign. For definiteness

assume P∗

1 is totally generative and P∗

2 is totally absorb-

ing

W1 ≥ 0 : v
− · λ̂1 ≥ 0 and v

+ · λ̂1 ≥ 0

W2 ≤ 0 : v
− · λ̂2 ≤ 0 and v

+ · λ̂2 ≤ 0.

SoW in Eqn. 39 is

W = |W2|− |W1| (40)

where W1 and W2 are the work generated by, and ab-

sorbed by the two impulsive forces. However, the sep-

arate works cannot be determined. That is, unlike the

case of a single impulse, the collisional energetics is not

fully determined by knowledge of the two impulses. We

will now reduce this indeterminacy to a single parameter,

0 ≤ so ≤ 1 which characterizes how much overlap there
is between the nominally simultaneous impulses.

Duplicating the notation and argument used for

Eqn. 38, using 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 to parame-
terize the partial impulsesP1 = pP∗

1 and P2 = qP∗

1, we

can calculate

W1 =

∫

dW1 =
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=
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W2 = v
− ·P∗

2 + |P∗

2|2/(2m)+P
∗
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2(1−so)/m (42)

The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be

the impulse from the trailing old stance foot and P∗

2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗

1 = 0,v− · P∗

2 = −mv2φ2/2, and
|P∗

1|2 = |P∗

2|2 = P∗

1 · P∗

2 = m2v2φ2/4.
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entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
velocity v− and both collisional impulses,P∗

1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we

can calculate the net work as

mv
+ = mv

− + P
∗

1 + P
∗

2

W = ∆E =
m

2

(

(v+)2 − (v−)2
)

. (39)

For the cases of main interest we can assume that each

impulse only does work with one sign. For definiteness

assume P∗

1 is totally generative and P∗

2 is totally absorb-

ing

W1 ≥ 0 : v
− · λ̂1 ≥ 0 and v

+ · λ̂1 ≥ 0

W2 ≤ 0 : v
− · λ̂2 ≤ 0 and v

+ · λ̂2 ≤ 0.

SoW in Eqn. 39 is

W = |W2|− |W1| (40)

where W1 and W2 are the work generated by, and ab-

sorbed by the two impulsive forces. However, the sep-

arate works cannot be determined. That is, unlike the

case of a single impulse, the collisional energetics is not

fully determined by knowledge of the two impulses. We

will now reduce this indeterminacy to a single parameter,

0 ≤ so ≤ 1 which characterizes how much overlap there
is between the nominally simultaneous impulses.

Duplicating the notation and argument used for

Eqn. 38, using 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 to parame-
terize the partial impulsesP1 = pP∗

1 and P2 = qP∗

1, we

can calculate

W1 =

∫

dW1 =

∫ t2

t1

v ·F1dt (41)

=

∫ P
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0

(v− + (P1 + P2)/m) · dP1

=

∫ 1
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(
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The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be

the impulse from the trailing old stance foot and P∗

2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗

1 = 0,v− · P∗

2 = −mv2φ2/2, and
|P∗

1|2 = |P∗

2|2 = P∗
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entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
velocity v− and both collisional impulses,P∗

1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we

can calculate the net work as

mv
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− + P
∗

1 + P
∗

2

W = ∆E =
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(

(v+)2 − (v−)2
)

. (39)

For the cases of main interest we can assume that each

impulse only does work with one sign. For definiteness

assume P∗

1 is totally generative and P∗

2 is totally absorb-

ing

W1 ≥ 0 : v
− · λ̂1 ≥ 0 and v

+ · λ̂1 ≥ 0

W2 ≤ 0 : v
− · λ̂2 ≤ 0 and v

+ · λ̂2 ≤ 0.

SoW in Eqn. 39 is

W = |W2|− |W1| (40)

where W1 and W2 are the work generated by, and ab-

sorbed by the two impulsive forces. However, the sep-

arate works cannot be determined. That is, unlike the

case of a single impulse, the collisional energetics is not

fully determined by knowledge of the two impulses. We

will now reduce this indeterminacy to a single parameter,

0 ≤ so ≤ 1 which characterizes how much overlap there
is between the nominally simultaneous impulses.

Duplicating the notation and argument used for

Eqn. 38, using 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 to parame-
terize the partial impulsesP1 = pP∗

1 and P2 = qP∗
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=
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The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be
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2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗
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entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
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1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we

can calculate the net work as
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For the cases of main interest we can assume that each

impulse only does work with one sign. For definiteness

assume P∗

1 is totally generative and P∗

2 is totally absorb-

ing

W1 ≥ 0 : v
− · λ̂1 ≥ 0 and v
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W2 ≤ 0 : v
− · λ̂2 ≤ 0 and v
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SoW in Eqn. 39 is

W = |W2|− |W1| (40)

where W1 and W2 are the work generated by, and ab-

sorbed by the two impulsive forces. However, the sep-

arate works cannot be determined. That is, unlike the

case of a single impulse, the collisional energetics is not

fully determined by knowledge of the two impulses. We

will now reduce this indeterminacy to a single parameter,

0 ≤ so ≤ 1 which characterizes how much overlap there
is between the nominally simultaneous impulses.

Duplicating the notation and argument used for

Eqn. 38, using 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 to parame-
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The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be

the impulse from the trailing old stance foot and P∗

2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗

1 = 0,v− · P∗

2 = −mv2φ2/2, and
|P∗

1|2 = |P∗

2|2 = P∗

1 · P∗

2 = m2v2φ2/4.
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entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
velocity v− and both collisional impulses,P∗

1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we

can calculate the net work as
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∗
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∗
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(
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For the cases of main interest we can assume that each
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will now reduce this indeterminacy to a single parameter,

0 ≤ so ≤ 1 which characterizes how much overlap there
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=
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The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be

the impulse from the trailing old stance foot and P∗

2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗

1 = 0,v− · P∗

2 = −mv2φ2/2, and
|P∗

1|2 = |P∗

2|2 = P∗

1 · P∗

2 = m2v2φ2/4.
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entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
velocity v− and both collisional impulses,P∗

1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we

can calculate the net work as

mv
+ = mv

− + P
∗

1 + P
∗

2

W = ∆E =
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(

(v+)2 − (v−)2
)

. (39)

For the cases of main interest we can assume that each

impulse only does work with one sign. For definiteness

assume P∗

1 is totally generative and P∗

2 is totally absorb-

ing

W1 ≥ 0 : v
− · λ̂1 ≥ 0 and v

+ · λ̂1 ≥ 0

W2 ≤ 0 : v
− · λ̂2 ≤ 0 and v

+ · λ̂2 ≤ 0.

SoW in Eqn. 39 is

W = |W2|− |W1| (40)

where W1 and W2 are the work generated by, and ab-

sorbed by the two impulsive forces. However, the sep-

arate works cannot be determined. That is, unlike the

case of a single impulse, the collisional energetics is not

fully determined by knowledge of the two impulses. We

will now reduce this indeterminacy to a single parameter,

0 ≤ so ≤ 1 which characterizes how much overlap there
is between the nominally simultaneous impulses.

Duplicating the notation and argument used for

Eqn. 38, using 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 to parame-
terize the partial impulsesP1 = pP∗

1 and P2 = qP∗

1, we

can calculate

W1 =

∫

dW1 =

∫ t2
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v ·F1dt (41)

=
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=
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= v
− ·P∗
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Similarly,

W2 = v
− ·P∗

2 + |P∗

2|2/(2m)+P
∗

1 ·P∗
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The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be

the impulse from the trailing old stance foot and P∗

2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗

1 = 0,v− · P∗

2 = −mv2φ2/2, and
|P∗

1|2 = |P∗

2|2 = P∗

1 · P∗

2 = m2v2φ2/4.

26

(a) (b) (c)

p

q

1

1

ii

iii

iv

pP 
1
*

P 
1
*

qP 
2
*

  P 
2
*

F
2

F
1

t

t

s0

Figure 9: A point-mass is acted upon by two impulses P
∗

1

and P
∗

2 which accumulate in time as P1(t) = p(t)P∗

1 and
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entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
velocity v− and both collisional impulses,P∗

1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we

can calculate the net work as

mv
+ = mv

− + P
∗

1 + P
∗

2

W = ∆E =
m

2

(

(v+)2 − (v−)2
)

. (39)

For the cases of main interest we can assume that each

impulse only does work with one sign. For definiteness

assume P∗

1 is totally generative and P∗

2 is totally absorb-

ing

W1 ≥ 0 : v
− · λ̂1 ≥ 0 and v

+ · λ̂1 ≥ 0

W2 ≤ 0 : v
− · λ̂2 ≤ 0 and v

+ · λ̂2 ≤ 0.

SoW in Eqn. 39 is

W = |W2|− |W1| (40)

where W1 and W2 are the work generated by, and ab-

sorbed by the two impulsive forces. However, the sep-

arate works cannot be determined. That is, unlike the

case of a single impulse, the collisional energetics is not

fully determined by knowledge of the two impulses. We

will now reduce this indeterminacy to a single parameter,

0 ≤ so ≤ 1 which characterizes how much overlap there
is between the nominally simultaneous impulses.

Duplicating the notation and argument used for

Eqn. 38, using 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 to parame-
terize the partial impulsesP1 = pP∗

1 and P2 = qP∗

1, we

can calculate

W1 =

∫

dW1 =

∫ t2

t1

v ·F1dt (41)

=

∫ P
∗

1

0

(v− + (P1 + P2)/m) · dP1

=

∫ 1

0

(
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− + (pP∗

1 + qP∗

2)/m
)

·P∗

1dp
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− ·P∗

1

∫ 1

0

dp +
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∫ 1
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pdp

+
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1 · P∗
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∫ 1

0
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so
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− ·P∗

1 + |P∗

1|2/(2m) + (P∗

1 ·P∗

2)so/m

Similarly,

W2 = v
− ·P∗

2 + |P∗

2|2/(2m)+P
∗

1 ·P∗

2(1−so)/m (42)

The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be

the impulse from the trailing old stance foot and P∗

2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗

1 = 0,v− · P∗

2 = −mv2φ2/2, and
|P∗

1|2 = |P∗

2|2 = P∗

1 · P∗

2 = m2v2φ2/4.
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1 and

P2(t) = q(t)P∗

2. The area under a cross plot of q vs p de-
fines an overlap parameter so which is 0.5 if the impulses are

truly simultaneous. The parameter allows the calculation of the

impulse work in Eq. 41. The various paths in the p− q plane are
labeled to correspond with the paths in Fig. 5.

entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
velocity v− and both collisional impulses,P∗

1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we

can calculate the net work as

mv
+ = mv

− + P
∗

1 + P
∗

2

W = ∆E =
m

2

(

(v+)2 − (v−)2
)

. (39)

For the cases of main interest we can assume that each

impulse only does work with one sign. For definiteness

assume P∗

1 is totally generative and P∗

2 is totally absorb-

ing

W1 ≥ 0 : v
− · λ̂1 ≥ 0 and v

+ · λ̂1 ≥ 0

W2 ≤ 0 : v
− · λ̂2 ≤ 0 and v

+ · λ̂2 ≤ 0.

SoW in Eqn. 39 is

W = |W2|− |W1| (40)

where W1 and W2 are the work generated by, and ab-

sorbed by the two impulsive forces. However, the sep-

arate works cannot be determined. That is, unlike the

case of a single impulse, the collisional energetics is not

fully determined by knowledge of the two impulses. We

will now reduce this indeterminacy to a single parameter,

0 ≤ so ≤ 1 which characterizes how much overlap there
is between the nominally simultaneous impulses.

Duplicating the notation and argument used for

Eqn. 38, using 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 to parame-
terize the partial impulsesP1 = pP∗

1 and P2 = qP∗

1, we

can calculate

W1 =

∫

dW1 =

∫ t2

t1

v ·F1dt (41)

=

∫ P
∗

1

0

(v− + (P1 + P2)/m) · dP1

=

∫ 1
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(
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− + (pP∗
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2)/m
)

·P∗
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+
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1|2/(2m) + (P∗

1 ·P∗

2)so/m

Similarly,

W2 = v
− ·P∗

2 + |P∗

2|2/(2m)+P
∗

1 ·P∗

2(1−so)/m (42)

The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be

the impulse from the trailing old stance foot and P∗

2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗

1 = 0,v− · P∗

2 = −mv2φ2/2, and
|P∗

1|2 = |P∗

2|2 = P∗

1 · P∗

2 = m2v2φ2/4.
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and P
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2 which accumulate in time as P1(t) = p(t)P∗

1 and
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2. The area under a cross plot of q vs p de-
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entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
velocity v− and both collisional impulses,P∗

1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we

can calculate the net work as

mv
+ = mv

− + P
∗

1 + P
∗

2

W = ∆E =
m

2

(

(v+)2 − (v−)2
)

. (39)

For the cases of main interest we can assume that each

impulse only does work with one sign. For definiteness

assume P∗

1 is totally generative and P∗

2 is totally absorb-

ing

W1 ≥ 0 : v
− · λ̂1 ≥ 0 and v

+ · λ̂1 ≥ 0

W2 ≤ 0 : v
− · λ̂2 ≤ 0 and v

+ · λ̂2 ≤ 0.

SoW in Eqn. 39 is

W = |W2|− |W1| (40)

where W1 and W2 are the work generated by, and ab-

sorbed by the two impulsive forces. However, the sep-

arate works cannot be determined. That is, unlike the

case of a single impulse, the collisional energetics is not

fully determined by knowledge of the two impulses. We

will now reduce this indeterminacy to a single parameter,

0 ≤ so ≤ 1 which characterizes how much overlap there
is between the nominally simultaneous impulses.

Duplicating the notation and argument used for

Eqn. 38, using 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 to parame-
terize the partial impulsesP1 = pP∗

1 and P2 = qP∗

1, we

can calculate

W1 =

∫

dW1 =
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t1

v ·F1dt (41)

=
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=
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Similarly,

W2 = v
− ·P∗

2 + |P∗

2|2/(2m)+P
∗

1 ·P∗

2(1−so)/m (42)

The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be

the impulse from the trailing old stance foot and P∗

2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗

1 = 0,v− · P∗

2 = −mv2φ2/2, and
|P∗

1|2 = |P∗

2|2 = P∗

1 · P∗

2 = m2v2φ2/4.
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entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
velocity v− and both collisional impulses,P∗

1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we

can calculate the net work as

mv
+ = mv

− + P
∗

1 + P
∗

2

W = ∆E =
m

2

(

(v+)2 − (v−)2
)

. (39)

For the cases of main interest we can assume that each

impulse only does work with one sign. For definiteness

assume P∗

1 is totally generative and P∗

2 is totally absorb-

ing

W1 ≥ 0 : v
− · λ̂1 ≥ 0 and v

+ · λ̂1 ≥ 0

W2 ≤ 0 : v
− · λ̂2 ≤ 0 and v

+ · λ̂2 ≤ 0.

SoW in Eqn. 39 is

W = |W2|− |W1| (40)

where W1 and W2 are the work generated by, and ab-

sorbed by the two impulsive forces. However, the sep-

arate works cannot be determined. That is, unlike the

case of a single impulse, the collisional energetics is not

fully determined by knowledge of the two impulses. We

will now reduce this indeterminacy to a single parameter,

0 ≤ so ≤ 1 which characterizes how much overlap there
is between the nominally simultaneous impulses.

Duplicating the notation and argument used for

Eqn. 38, using 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 to parame-
terize the partial impulsesP1 = pP∗

1 and P2 = qP∗

1, we

can calculate

W1 =

∫

dW1 =
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=
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Similarly,

W2 = v
− ·P∗

2 + |P∗

2|2/(2m)+P
∗

1 ·P∗

2(1−so)/m (42)

The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be

the impulse from the trailing old stance foot and P∗

2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗

1 = 0,v− · P∗

2 = −mv2φ2/2, and
|P∗

1|2 = |P∗

2|2 = P∗

1 · P∗

2 = m2v2φ2/4.
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Figure 9: A point-mass is acted upon by two impulses P
∗

1

and P
∗

2 which accumulate in time as P1(t) = p(t)P∗

1 and

P2(t) = q(t)P∗

2. The area under a cross plot of q vs p de-
fines an overlap parameter so which is 0.5 if the impulses are

truly simultaneous. The parameter allows the calculation of the

impulse work in Eq. 41. The various paths in the p− q plane are
labeled to correspond with the paths in Fig. 5.

entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
velocity v− and both collisional impulses,P∗

1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we
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2
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(v+)2 − (v−)2
)

. (39)

For the cases of main interest we can assume that each

impulse only does work with one sign. For definiteness

assume P∗

1 is totally generative and P∗

2 is totally absorb-

ing
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− · λ̂1 ≥ 0 and v

+ · λ̂1 ≥ 0

W2 ≤ 0 : v
− · λ̂2 ≤ 0 and v

+ · λ̂2 ≤ 0.
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where W1 and W2 are the work generated by, and ab-

sorbed by the two impulsive forces. However, the sep-

arate works cannot be determined. That is, unlike the

case of a single impulse, the collisional energetics is not

fully determined by knowledge of the two impulses. We

will now reduce this indeterminacy to a single parameter,

0 ≤ so ≤ 1 which characterizes how much overlap there
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might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.
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1 to be
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2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗
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2 = −mv2φ2/2, and
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entire integral of force in one direction is complete be-

fore force in another direction climbs above zero, then the

collisions are sequential and the net collision energetics

is calculated by successive use of Eqs. 10 through 16 or

Eqn. 36.

Now we allow the possibility of overlap of the colli-

sional forces (see Fig. 9). Assumemassm, pre-collisional
velocity v− and both collisional impulses,P∗

1 andP∗

2 are

known. As for the case of a single impulse (Eqn. 36 we

can calculate the net work as

mv
+ = mv

− + P
∗

1 + P
∗
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W = ∆E =
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(

(v+)2 − (v−)2
)

. (39)

For the cases of main interest we can assume that each

impulse only does work with one sign. For definiteness

assume P∗

1 is totally generative and P∗

2 is totally absorb-

ing

W1 ≥ 0 : v
− · λ̂1 ≥ 0 and v

+ · λ̂1 ≥ 0

W2 ≤ 0 : v
− · λ̂2 ≤ 0 and v

+ · λ̂2 ≤ 0.

SoW in Eqn. 39 is

W = |W2|− |W1| (40)

where W1 and W2 are the work generated by, and ab-

sorbed by the two impulsive forces. However, the sep-

arate works cannot be determined. That is, unlike the

case of a single impulse, the collisional energetics is not

fully determined by knowledge of the two impulses. We

will now reduce this indeterminacy to a single parameter,

0 ≤ so ≤ 1 which characterizes how much overlap there
is between the nominally simultaneous impulses.

Duplicating the notation and argument used for

Eqn. 38, using 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 to parame-
terize the partial impulsesP1 = pP∗

1 and P2 = qP∗

1, we

can calculate

W1 =

∫

dW1 =

∫ t2

t1

v ·F1dt (41)

=
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=
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The overlap parameter so fully characterizes the degree

to which the collision is simultaneous (see Fig. 9). When

so = 0, P∗

1 is complete before P∗

2 starts, and when

so = 1,P∗

2 is complete beforeP
∗

1 starts. When so = 0.5,
as would be the case if the impulses progressed propor-

tionally (i.e., F1(t)/F2(t) = constant), then the collision

might be called truly simultaneous. Eqn. 41 is used in the

text to describe various scenarios for the double-stance

collision in walking.

Application to walking For walking we take P∗

1 to be

the impulse from the trailing old stance foot and P∗

2 to

be the impulse from the leading new stance foot. We can

find the various terms in these formulae using small angle

formulas as: v− · P∗

1 = 0,v− · P∗

2 = −mv2φ2/2, and
|P∗

1|2 = |P∗

2|2 = P∗

1 · P∗

2 = m2v2φ2/4.
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The work depends on the order parameter s0.

                                                             Another distinguished limit.
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Even within collisional/rolling model, energetics  
is sensitive to details.
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Figure 6: Relation between walking and rolling. (a) The

rimless wheel. (b) The rolling polygon, ill-defined (a distin-

guished limit). (c) The concave rolling polygon is a rimless

wheel. (d) The slightly convex polygon rolls with no dissipa-

tion, but impulsively (e)An almost-flat foot with rigid ankle can,

like the impulsive polygon, be part of the step-to-step impulse,

but absorb no energy. On the hodograph of Fig. 5 the rounded

foot corresponds to constant energy motion on the constant v
circular arc.

along two virtual legs (not necessarily orthogonal to v−

and v+), how should these legs be oriented and how

should the separate force histories vary so as to minimize

the net collisional cost? A slightly involved argument

shows that the solution is the path (v) of Fig. 5; a sequence

of two pseudo-elastic collisions oriented at the quarter and

three-quarter point of the splayed double-stance legs. All

other trajectories based on forces along two legs, no mat-

ter what the leg orientations or how the forces are dis-

tributed in time, have greater cost.

The energetic cost of one such two-collision episode

(n = 2, egi = 0, φi = φ/2) is

Em = mb(1 − r)φ2v2/16, (31)

one eighth the cost of passive-dynamic walking and one

half of toe-off before heel-strike. This situation is essen-

tially identical to the model for a horse canter, but with

two beats here instead of the horse’s three.

Collisional rolling. One model of walking, used in

McGeer-like passive robots, is with round feet and locked

ankles. To understand such a foot from the collisional

perspective it is instructive to consider the subtle case of

a rolling polygon (Fig. 6).

So far the collisional walking models considered are

mechanically similar to the rimless wheel of Fig. 6a. For

simplicity assume passive rolling without slip, and with

all mass at the center point. One might think the rimless

wheel is equivalent to a rolling polygon (Fig. 6b). But the

polygon is ambiguous. Fig. 6c shows a concave polygon

which is equivalent to the rimless wheel, no matter how

small the concavity. On the other hand, Fig. 6d shows

a convex polygon. This polygon rolls with no dissipa-

tion, no matter how small the convexity. Machined solids

similar to the slightly concave and convex polygon, even

if almost imperceptably different, roll completely differ-

ently. The convex polygon rolls well and the concave

polygon loses considerable fraction of its energy at each

collision. Thus the regular polygon is (in math language)

a distinguished limit with different behavior depending on

whether it is considered an extreme case of concavity or

of convexity.

A rolling, slightly-convex polygon has motions that al-

ternate between inverted pendulum motion (hinged at a

vertex) and a collisional phase. The collisional phase is

not dissipative but rather tracks path (vi) in Fig. 5, all in

an instant. This is equivalent to having a continuum of

legs.

From the collisional perspective we can treat rounded

feet, even if close to flat, as a means to track path (vi) in

Fig. 5. If the foot length is the step length d then there
is no dissipation. If the foot length df is less than d then
the relevant collisional length is d − df . This should re-

place d in any of our formulas involving collisional loss
but not in formulas relating step length to speed. Thus,

at a given speed and with a given collisional mechanism

(be it passive walking, or push-off before heel-strike), use

of a rounded foot multiplies the collisional cost per step

by (d − df )2/d2; a rounded foot with length of half the

step-length quarters the collisional cost.

Collision cost and the plethora of step-to-step transi-

tion models. For walking the collisional cost depends

sensitively on the details of the step-to-step transition. We

can summarize the various scenarios for the cost of one

step-to-step transition, as

Em = mbJ(1 − r)
d2

"2

v2

2
(32)

where, reviewing, v is average forward speed, b ≈ 5 is an
average metabolic cost for negative work or absorption,

0 ≤ r ≤ 1 is an elastic recovery, and d ≥ df and " are

17
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tion, but impulsively (e)An almost-flat foot with rigid ankle can,

like the impulsive polygon, be part of the step-to-step impulse,

but absorb no energy. On the hodograph of Fig. 5 the rounded

foot corresponds to constant energy motion on the constant v
circular arc.

along two virtual legs (not necessarily orthogonal to v−

and v+), how should these legs be oriented and how

should the separate force histories vary so as to minimize

the net collisional cost? A slightly involved argument

shows that the solution is the path (v) of Fig. 5; a sequence

of two pseudo-elastic collisions oriented at the quarter and

three-quarter point of the splayed double-stance legs. All

other trajectories based on forces along two legs, no mat-

ter what the leg orientations or how the forces are dis-

tributed in time, have greater cost.

The energetic cost of one such two-collision episode

(n = 2, egi = 0, φi = φ/2) is

Em = mb(1 − r)φ2v2/16, (31)

one eighth the cost of passive-dynamic walking and one

half of toe-off before heel-strike. This situation is essen-

tially identical to the model for a horse canter, but with

two beats here instead of the horse’s three.

Collisional rolling. One model of walking, used in

McGeer-like passive robots, is with round feet and locked

ankles. To understand such a foot from the collisional

perspective it is instructive to consider the subtle case of

a rolling polygon (Fig. 6).

So far the collisional walking models considered are

mechanically similar to the rimless wheel of Fig. 6a. For

simplicity assume passive rolling without slip, and with

all mass at the center point. One might think the rimless

wheel is equivalent to a rolling polygon (Fig. 6b). But the

polygon is ambiguous. Fig. 6c shows a concave polygon

which is equivalent to the rimless wheel, no matter how

small the concavity. On the other hand, Fig. 6d shows

a convex polygon. This polygon rolls with no dissipa-

tion, no matter how small the convexity. Machined solids

similar to the slightly concave and convex polygon, even

if almost imperceptably different, roll completely differ-

ently. The convex polygon rolls well and the concave

polygon loses considerable fraction of its energy at each

collision. Thus the regular polygon is (in math language)

a distinguished limit with different behavior depending on

whether it is considered an extreme case of concavity or

of convexity.

A rolling, slightly-convex polygon has motions that al-

ternate between inverted pendulum motion (hinged at a

vertex) and a collisional phase. The collisional phase is

not dissipative but rather tracks path (vi) in Fig. 5, all in

an instant. This is equivalent to having a continuum of

legs.

From the collisional perspective we can treat rounded

feet, even if close to flat, as a means to track path (vi) in

Fig. 5. If the foot length is the step length d then there
is no dissipation. If the foot length df is less than d then
the relevant collisional length is d − df . This should re-

place d in any of our formulas involving collisional loss
but not in formulas relating step length to speed. Thus,

at a given speed and with a given collisional mechanism

(be it passive walking, or push-off before heel-strike), use

of a rounded foot multiplies the collisional cost per step

by (d − df )2/d2; a rounded foot with length of half the

step-length quarters the collisional cost.

Collision cost and the plethora of step-to-step transi-

tion models. For walking the collisional cost depends

sensitively on the details of the step-to-step transition. We

can summarize the various scenarios for the cost of one

step-to-step transition, as

Em = mbJ(1 − r)
d2

"2

v2

2
(32)

where, reviewing, v is average forward speed, b ≈ 5 is an
average metabolic cost for negative work or absorption,

0 ≤ r ≤ 1 is an elastic recovery, and d ≥ df and " are

17
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Figure 6: Relation between walking and rolling. (a) The

rimless wheel. (b) The rolling polygon, ill-defined (a distin-

guished limit). (c) The concave rolling polygon is a rimless

wheel. (d) The slightly convex polygon rolls with no dissipa-

tion, but impulsively (e)An almost-flat foot with rigid ankle can,

like the impulsive polygon, be part of the step-to-step impulse,

but absorb no energy. On the hodograph of Fig. 5 the rounded

foot corresponds to constant energy motion on the constant v
circular arc.

along two virtual legs (not necessarily orthogonal to v−

and v+), how should these legs be oriented and how

should the separate force histories vary so as to minimize

the net collisional cost? A slightly involved argument

shows that the solution is the path (v) of Fig. 5; a sequence

of two pseudo-elastic collisions oriented at the quarter and

three-quarter point of the splayed double-stance legs. All

other trajectories based on forces along two legs, no mat-

ter what the leg orientations or how the forces are dis-

tributed in time, have greater cost.

The energetic cost of one such two-collision episode

(n = 2, egi = 0, φi = φ/2) is

Em = mb(1 − r)φ2v2/16, (31)

one eighth the cost of passive-dynamic walking and one

half of toe-off before heel-strike. This situation is essen-

tially identical to the model for a horse canter, but with

two beats here instead of the horse’s three.

Collisional rolling. One model of walking, used in

McGeer-like passive robots, is with round feet and locked

ankles. To understand such a foot from the collisional

perspective it is instructive to consider the subtle case of

a rolling polygon (Fig. 6).

So far the collisional walking models considered are

mechanically similar to the rimless wheel of Fig. 6a. For

simplicity assume passive rolling without slip, and with

all mass at the center point. One might think the rimless

wheel is equivalent to a rolling polygon (Fig. 6b). But the

polygon is ambiguous. Fig. 6c shows a concave polygon

which is equivalent to the rimless wheel, no matter how

small the concavity. On the other hand, Fig. 6d shows

a convex polygon. This polygon rolls with no dissipa-

tion, no matter how small the convexity. Machined solids

similar to the slightly concave and convex polygon, even

if almost imperceptably different, roll completely differ-

ently. The convex polygon rolls well and the concave

polygon loses considerable fraction of its energy at each

collision. Thus the regular polygon is (in math language)

a distinguished limit with different behavior depending on

whether it is considered an extreme case of concavity or

of convexity.

A rolling, slightly-convex polygon has motions that al-

ternate between inverted pendulum motion (hinged at a

vertex) and a collisional phase. The collisional phase is

not dissipative but rather tracks path (vi) in Fig. 5, all in

an instant. This is equivalent to having a continuum of

legs.

From the collisional perspective we can treat rounded

feet, even if close to flat, as a means to track path (vi) in

Fig. 5. If the foot length is the step length d then there
is no dissipation. If the foot length df is less than d then
the relevant collisional length is d − df . This should re-

place d in any of our formulas involving collisional loss
but not in formulas relating step length to speed. Thus,

at a given speed and with a given collisional mechanism

(be it passive walking, or push-off before heel-strike), use

of a rounded foot multiplies the collisional cost per step

by (d − df )2/d2; a rounded foot with length of half the

step-length quarters the collisional cost.

Collision cost and the plethora of step-to-step transi-

tion models. For walking the collisional cost depends

sensitively on the details of the step-to-step transition. We

can summarize the various scenarios for the cost of one

step-to-step transition, as

Em = mbJ(1 − r)
d2

"2

v2

2
(32)

where, reviewing, v is average forward speed, b ≈ 5 is an
average metabolic cost for negative work or absorption,

0 ≤ r ≤ 1 is an elastic recovery, and d ≥ df and " are
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rimless wheel. (b) The rolling polygon, ill-defined (a distin-

guished limit). (c) The concave rolling polygon is a rimless

wheel. (d) The slightly convex polygon rolls with no dissipa-

tion, but impulsively (e)An almost-flat foot with rigid ankle can,

like the impulsive polygon, be part of the step-to-step impulse,

but absorb no energy. On the hodograph of Fig. 5 the rounded

foot corresponds to constant energy motion on the constant v
circular arc.

along two virtual legs (not necessarily orthogonal to v−

and v+), how should these legs be oriented and how

should the separate force histories vary so as to minimize

the net collisional cost? A slightly involved argument

shows that the solution is the path (v) of Fig. 5; a sequence

of two pseudo-elastic collisions oriented at the quarter and

three-quarter point of the splayed double-stance legs. All

other trajectories based on forces along two legs, no mat-

ter what the leg orientations or how the forces are dis-

tributed in time, have greater cost.

The energetic cost of one such two-collision episode

(n = 2, egi = 0, φi = φ/2) is

Em = mb(1 − r)φ2v2/16, (31)

one eighth the cost of passive-dynamic walking and one

half of toe-off before heel-strike. This situation is essen-

tially identical to the model for a horse canter, but with

two beats here instead of the horse’s three.

Collisional rolling. One model of walking, used in

McGeer-like passive robots, is with round feet and locked

ankles. To understand such a foot from the collisional

perspective it is instructive to consider the subtle case of

a rolling polygon (Fig. 6).

So far the collisional walking models considered are

mechanically similar to the rimless wheel of Fig. 6a. For

simplicity assume passive rolling without slip, and with

all mass at the center point. One might think the rimless

wheel is equivalent to a rolling polygon (Fig. 6b). But the

polygon is ambiguous. Fig. 6c shows a concave polygon

which is equivalent to the rimless wheel, no matter how

small the concavity. On the other hand, Fig. 6d shows

a convex polygon. This polygon rolls with no dissipa-

tion, no matter how small the convexity. Machined solids

similar to the slightly concave and convex polygon, even

if almost imperceptably different, roll completely differ-

ently. The convex polygon rolls well and the concave

polygon loses considerable fraction of its energy at each

collision. Thus the regular polygon is (in math language)

a distinguished limit with different behavior depending on

whether it is considered an extreme case of concavity or

of convexity.

A rolling, slightly-convex polygon has motions that al-

ternate between inverted pendulum motion (hinged at a

vertex) and a collisional phase. The collisional phase is

not dissipative but rather tracks path (vi) in Fig. 5, all in

an instant. This is equivalent to having a continuum of

legs.

From the collisional perspective we can treat rounded

feet, even if close to flat, as a means to track path (vi) in

Fig. 5. If the foot length is the step length d then there
is no dissipation. If the foot length df is less than d then
the relevant collisional length is d − df . This should re-

place d in any of our formulas involving collisional loss
but not in formulas relating step length to speed. Thus,

at a given speed and with a given collisional mechanism

(be it passive walking, or push-off before heel-strike), use

of a rounded foot multiplies the collisional cost per step

by (d − df )2/d2; a rounded foot with length of half the

step-length quarters the collisional cost.

Collision cost and the plethora of step-to-step transi-

tion models. For walking the collisional cost depends

sensitively on the details of the step-to-step transition. We

can summarize the various scenarios for the cost of one

step-to-step transition, as

Em = mbJ(1 − r)
d2

"2

v2

2
(32)

where, reviewing, v is average forward speed, b ≈ 5 is an
average metabolic cost for negative work or absorption,

0 ≤ r ≤ 1 is an elastic recovery, and d ≥ df and " are

17

CAD drawings superposed

A distinguished limit.
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Even within collisional/rolling model, energetics  
is sensitive to details.
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