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General Goal: Understand
coordination choices of animals
(including people).

General Approach: Assume the
principle of maximum laziness.

» Animals move in such a way as to minimize their

use of energy: Your great great ... great...
. great grandmother’s sister ...
died (young).



Some issues/caveats:

* Selection does not mean, exactly, optimization.

3K There is selection for other things,

X e.g., speed, weight bearing, 1Q, sharp teeth,...

3K Energy use per unit ?

3K How to calculate relation between motion and
energy use (we use: cost = muscle work)

3K Math 191, optimization is inherently inaccurate.



Optima tend to be insensitive to control parameters.
Performance |
Real human optimum

Model optimum
e small
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Parameters

Range of parameters giving near
optimum performance in reality

Optimization can’t predict parameters well.




Margaria, 1976 Chemical energy used to walk
’ and run up and down hill
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When work is substantial,
energy use is roughly proportional to work.



Assume a spherical horse...
® That’s too hard

® Make it a small sphere, a particle

® Massless legs
Point-mass body
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Minimizing work at fixed v and d finds solutions which
spend most time with Power =0: =0 or F=0

a) Some possible gaits b) Inverted pendulum walk
Stance Pushoff ... Heelstrike
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Continuous solution gets close to an
impulsive solution as numerical grid gets

finer.

b) Pendular walk
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Save calculation effort with new
assumption/approximation:

All work is done impulsively.

Work calculations » Collision calculations
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F ,

Relate impulse and work (2 ways) pP

l. Net change:

ll. Integrate: I g

The impulse is o | ,
The partial impulse P, 0<p<17, is

to _ to
1 t1 b
t2
W = /dW:/ v - Fdt
Impulse momentum L

\ .

L M Fdt

1
= / (V™ +pP*/m) - P*dp
0

1 * * 1
P*-P
= V_'P*/ dp + /pdp
0 m 0

W = AE=" (VTP - v < L
1 1/2

v -P*+|P*?/(2m). = v -P*+ [P*]*/(2m)

mV+:mv_—|—P* = /0 (V_+P/nz)-@
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Net Work in “Collision’ is

positive (generated) work - negative (absorbed) work.

AE = —E, + E,

More assumptions:

* | eg is close to vertical
* Motion is close to horizontal
* Speed is close to constant



One shallow angle collision:

(a) absorbing

Spread in time

generating
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Impulse
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Change in energy in collision: AF) = —F_ + E,

(b) where

E, = m(¢ v)?/2
Ly = m(gb+fu)2/2
@ 1
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absorbing ., )C __ elastic generating_ \C
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Passive Walking and rimless wheel (rolling polygon)

Simplest model of
passive-dynamic
walking

Rimless wheel

rolling polygon
( & POYS )N | The collision model
m, I d \\\\

N Y

exclusively
absorbing , \C




Energetic cost of taking one step

E,, = bop*v"m/2

inefficiency, about 4 (step length) / 2(leg length)

Similarly for running

(b) Passive running
downbhill

E,, = bd*v*m/2

Balanced with gravitational energy supply.



Hodograph: trajectory of tip of velocity vector

Constant energy curve,
Constant v circle

old stance leg
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A L oss scales with distance
from constant v circle
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Energy saving trick for walking:

then land on leading leg (eg = -7)
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Energy saving trick for running:

then push off (net eg = 0)
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Pseudo-elastic collision (no real elasticity).
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Energy saving trick for running:

then push off (net eg = 0)
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Two morals:
|) A sequence of collisions uses less energy
than a single collision (for given deflection angle)
II) A pseudo-elastic collision uses less energy
than a plastic collision.

Horse gallop: Seems to use both systems:
Ba-duh-dump ba-duh-dump
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Relation between brachiation and galloping

oval rolling
& skipping

transition

(b) /o—f-"»ghi.\ (d) Spherical horse:
d >~ e eccentric sphere
" JAN A hopping & sliding

surface 'legs'
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oval rolling
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Relation between brachiation and galloping

oval rolling
& skipping

transition

(b) /._f.“ﬁhi,\ Spherical horse:
ad eccentric sphere

surface Iegs
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Somewhat odd result:

An infinite number of infinitely small collisions,
each “orthogonal” to the path,

tends to perfectly elastic,

no matter the nature of the individual collisions
(plastic or generative or in-between).
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“Simultaneous’” collisions

to
W1 = /dWl :/ Vv -Fldt (4
t1

- /Pl(V_ + (P1+P2)/m) - dPy

1
= /(V‘+(pP’{+qP§)/m)°Pidp
0

o [0 P;-P; [
mv’® = mv~ + P} + P} =V ‘Pl/o dp+ — /Opdp
_ Mo 9 —\2 P -P; [
W= AE=Z (v =@ )) el
N —

So

= v P+ [P1]?/(2m) + (P] - P3)so/m

Wo = v~ P +|P3|?/(2m) + P - P3(1—s0)/m
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“Simultaneous’” collisions
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The work depends on the order parameter so.
Another distinguished limit.
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Back to walking

B _ -
coljlision reduction factor
path = Epm / (bmv202/2)
________ i 1
v 3/4
111 1/2
vi 1/3
i1 1/4
\% 1/8

—
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virtual pseudo-elastic legs for path v



Back to walking

collision reduction factor

=J
path | =Em/ (bmv2¢2/2)
________ i 1
v 3/4
111 1/2
vi 1/3
i 1/4
\% 1/8

virtual pseudo-elastic legs for path v

Even within collisional/rolling model, energetics
is sensitive to details.
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Collisions compared to rolling

(a) (b) (€)
7

(d) impulsive rolling
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Collisions compared to roIIing
(©)

|mpuIS|ve rolling

\ almost flat
| fQot

rimless polygon concave convex Convex
wheel polygon polygon foot

CAD drawings
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Collisions compared to roIIing
(©)

|mpuIS|ve rolling

\ almost flat
. fQot

rimless polygon concave convex Convex
wheel polygon polygon foot

CAD drawings superposed
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Collisions compared to rolling
(a) (b) (C) A\

(d) impulsive rolling
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? (©) almost flat
\___ ‘ foot
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rimless polygon concave convex convex
wheel polygon polygon foot
CAD drawings superposed

A distinguished limit.
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Punchline
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virtual pseudo-elastic legs for path v

collision reduction factor
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Punchline

collision reduction factor

=J
path | =Em/ (bmv2¢2/2)
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virtual pseudo-elastic legs for path v

Even within collisional/rolling model, energetics
is sensitive to details.
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