
USING CONTROLLABILITY OF SIMPLE MODELS
TO GENERATE MAXIMALLY ROBUST

WALKING-ROBOT CONTROLLERS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Petr Victorovich Zaytsev

January 2015

c© 2015 Petr Victorovich Zaytsev

ALL RIGHTS RESERVED

USING CONTROLLABILITY OF SIMPLE MODELS TO GENERATE

MAXIMALLY ROBUST WALKING-ROBOT CONTROLLERS

Petr Victorovich Zaytsev, Ph.D.

Cornell University 2015

We study the ability of bipedal walking robots both to avoid falling down and to

reach a specific goal, such as standing still or moving along a desired trajectory.

The main questions are: When — in what states and with what controls — is it

possible for the robot to avoid a fall or to reach a given goal? When reaching

the goal is possible, how fast (in how many steps) can it be done? For various

meanings of the word ‘optimal’, what are optimal ways of getting to the goal?

Our primary approach uses two simple 2D models of walking: the Inverted

Pendulum (IP) and Linear Inverted Pendulum (LIP). Both models have a point

mass at the hip and two massless legs: rigid legs in the IP, extensible in the

LIP model. The hip of the LIP is constrained to move at a fixed height above

the ground. Both models have two controls per step: step length and impul-

sive push-off force along the stance leg just before heel-strike in the IP, and step

length and stepping time in the LIP model. For each model we numerically

compute the extended n-step viable regions: all combinations of states and controls

that let the robot take at least n steps and not fall. We also compute the extended

n-step controllable regions: all states and controls that let the robot reach a given

steady-state-walking goal by taking n steps or fewer.

Using these models we justify two claims: (i) In most cases and for most

bipeds, when the biped can reach a given goal at all, it can do so within two

steps. This result is consistent with some human walking-balance and visual-

guidance experiments. (ii) The ability to reach a specific steady-state target is

almost equivalent to being able to avoid totally falling down. The controllable

regions of the IP model also help us understand the trade-offs between differ-

ent controllers. Such trade-offs are in robustness, convergence to the nominal

motion, and energy efficiency. Based on things learned, we design a walking

controller for a real robot Cornell Ranger, which is nearly maximally robust,

near optimal in some regards, and is simple in structure.

BIOGRAPHICAL SKETCH

Petr Zaytsev was born on 24 September 1986 in Moscow, Russia. In 2003, Petr

was accepted for the Specialist program of the Mechanics & Mathematics De-

partments at Moscow State University. He received a Specialist degree in Me-

chanics in 2008. The same year, Petr enrolled in the PhD program in Theoretical

and Applied Mechanics at Cornell University. Since August 2008, Petr is a stu-

dent at the Biorobotics and Locomotion Lab at Cornell University, researching

legged robots.

iii

To my parents

Nataliya M. Philippova and Victor A. Zaytsev

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor Andy Ruina for his advice and enthusiasm

that helped me make progress in this thesis. Many of the ideas in the thesis

originated in his head, while I worked out the details. I also wish to thank John

Guckenheimer and Adrian Lewis for serving on my committee.

I would like to thank members of the Ruina Lab, both past and present, for

their ideas, suggestions, and other help that contributed to the thesis: Pranav

Bhounsule, Atif Chaudhry, Jason Cortell, Anoop Grewal, Javad Hasaneini, Boris

Kogan, Matthew Kelly, Matthew Sheen, Feng Shuai, Gregg Stiesberg, Wouter

Wolfslag. I am thankful to Cindy Twardokus and Marcia Sawyer for their help

with administrative work.

I would like to thank my fellow lab-mates Pranav, Atif, Jason, Anoop, Javad,

Boris, Matt, M̂att, Ben, Gregg, Wouter, Tim, Ellen, Ruru, Lipeng, Zhentao, Kang,

Dunwen, and all my friends in Ithaca for their company and support. I am

highly grateful to Nithin Michael, Wacek Godycki, Irina Gaynanova, Evan Bal-

lowe, Maxim Sheinin, and Anuttama Mohan for their help towards the end of

my PhD. I enjoyed the time with the Mystery Machine members, with Olivia

and her friends.

My research work was supported by National Science Foundation, Mc-

Mullen Scholarship, and teaching assistantships from the Cornell Department

of Mathematics.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi

1 Introduction 1
1.1 Past control approaches . 1

1.1.1 Passive dynamics . 2
1.1.2 Zero moment point . 3
1.1.3 Hybrid zero dynamics . 4
1.1.4 Model predictive control . 5
1.1.5 Optimal control policies . 6

1.2 Capture regions . 7
1.3 Viability theory . 9
1.4 Control approach in this thesis . 10
1.5 Contributions of the thesis . 12

2 Viable and controllable regions 15
2.1 Viable regions . 16
2.2 Controllable regions . 18

2.2.1 Strict controllable regions 22
2.2.2 Disturbances, model errors, and noise 24

2.3 Viability and controllability conjectures 25
2.3.1 Viable is controllable . 25
2.3.2 Two-step controllability . 26

2.4 Simple models of walking . 28
2.4.1 Inverted Pendulum in 2D 29
2.4.2 Linear Inverted Pendulum in 2D 31
2.4.3 Poincaré section . 32

2.5 Special cases, examples, and applications 32
2.5.1 Constraints . 33
2.5.2 Goals . 35
2.5.3 Control strategies . 37
2.5.4 Multi-DOF models . 39

2.6 Extended viable and controllable regions 40
2.6.1 Extended viable regions . 41
2.6.2 Strict extended controllable regions 43
2.6.3 Extended controllable regions 44
2.6.4 Parameter extension . 47
2.6.5 Relation to capture regions 47

2.7 Methods . 49
2.7.1 Controllable regions . 49

vi

2.7.2 Viable regions . 55
2.7.3 Extended viable regions . 57
2.7.4 Extended controllable regions 58
2.7.5 Constraints . 61

3 Inverted pendulum model in 2D 63
3.1 Equations of motion . 64

3.1.1 Limits of walking . 67
3.1.2 Poincaré map . 69

3.2 Viability and controllability of the 2D IP model 72
3.2.1 Allowed states and controls 73
3.2.2 One-step controllability . 74
3.2.3 n-step and∞-step controllability 81
3.2.4 Viable and extended viable regions 84
3.2.5 Additional constraints . 88

3.3 On robustness of passive dynamics 93

4 Linear inverted pendulum model in 2D 96
4.1 Equations of motion . 97

4.1.1 Walking constraints . 98
4.1.2 Poincaré map . 99

4.2 Viable and controllable regions . 102
4.2.1 one-step controllability . 104
4.2.2 n-step and∞-step controllability 108
4.2.3 Viable and extended viable regions 112
4.2.4 Swing time limitation . 114

4.3 IP vs. LIP . 118
4.3.1 Step-size controls . 119
4.3.2 Small steps: push-off in the IP is step-time in the LIP . . . 122

5 Two steps is almost everything 125
5.1 Simple models . 126
5.2 Two-step controls in the robotics community 128
5.3 Evidence from humans . 130
5.4 Counting rules . 131
5.5 Conclusion . 134

6 Stable, robust, efficient, and simple walking controller 135
6.1 Test robot: Cornell Ranger . 136

6.1.1 Model . 137
6.1.2 IP model proxy of Ranger 137
6.1.3 Controllable regions . 140

6.2 Controller design for Ranger . 143
6.2.1 Step-size controller: objectives 144

vii

6.2.2 Stability . 145
6.2.3 Robustness . 148
6.2.4 Efficiency . 150
6.2.5 Step-size controller . 152
6.2.6 Push-off controller . 155
6.2.7 Summary of the Ranger controller 159

6.3 Simulation results . 161
6.4 Controller design recipe . 167
6.5 Discussion . 170

A Viability and controllability of passive walkers 174

B Set-valued map representation of extended controllable regions 177

C Supplementary calculations for the 2D IP model 179
C.1 Computation of the extended n-step controllable regions 179
C.2 Boundary of the extended∞-step controllable region C̄p

∞ 181
C.3 Extended∞-step controllable region with two control axes 182
C.4 Controllability for large target speeds 187

D Supplementary calculations for Cornell Ranger 190
D.1 Leg swinging limitations . 190
D.2 Push-off limitations . 192
D.3 Energy efficiency of the step-size controller 193

E Inverted Pendulum in 3D 197
E.1 Model . 197
E.2 Example goals . 199

Bibliography 201

Glossary 210

viii

CHAPTER 1

INTRODUCTION

Humans and most bipedal robots are naturally unstable in walking. They fall

down, unless actively and appropriately controlled. A desirable feature for a

robot is that it reliably avoids falling in as many practical situations as possi-

ble. Two interesting control approaches that address fall avoidance are Pratt’s

Capture Regions [64] and Aubin’s Viability Theory [5]. Pratt observes that, if a

biped can come to a stop, then it can avoid falling. Hence, a controller should

be designed such as to ensure the ability of the robot to quickly come to a stop

at any time. The Viability Theory is an area of mathematics that studies evo-

lution of dynamical systems with given constraints to the system’s state. The

central question in Viability Theory is to find all initial states from where the

system can evolve indefinitely without violating the constraints. Here we de-

velop a controller design approach for walking robots which is closely related

to viability theory and capture region ideas.

1.1 Past control approaches

Before we describe viability theory and capture region concepts — the true start-

ing point of this thesis — in more detail, we describe some other approaches to

control of walking.

1

1.1.1 Passive dynamics

A walking robot with no motors and no sensors can be mechanically designed

so as to stably walk down a gentle slope, powered only by gravity [51, 20, 19].

Such passive walkers possess periodic trajectories, where the energy loss at each

collision is exactly compensated by the work done on the robot by gravity

over one step [27]. The first passive-dynamic robot to have a major impact

on robotics was McGeer’s ‘four-legged biped’ [51]. McGeer’s walker has two

pairs of rigidly connected legs with knees and is conceptually a 2D robot for the

frontal-balance purposes. Collins et al. extended McGeer’s ideas into 3D and

designed a truly 3D two-legged passive-dynamic robot [20].

While fully passive walkers can only walk downhill, a small amount of ac-

tuation can be added to a passive-model design to realize walking on level

ground [21]. Collins et al. equipped their 3D passive robot with ankle motors

which were used to push-off just before each collision [22]. The robot success-

fully walked on flat ground at 0.44 m/s.

By making use of passive motions (e.g. passively swinging their leg between

collisions), passive-dynamic-based robots tend to be energy effective. For exam-

ple, Collins’ powered biped used only 11 W to walk, making it one of the most

energy-efficient walking robots to date (inferior only to Cornell Ranger [9], see

Section 6.1). However, fully passive walkers have only a small basin of attrac-

tion around their periodic trajectories and require skill to be successfully started

to steadily walk downhill [20]. Passive-dynamics-based robots share poor ro-

bustness with their passive parents. Collins’ powered biped, designed based on

its passive counterpart, could not walk reliably even on level ground. In con-

trollers we develop in this thesis, we achieve a much stronger robustness (e.g.

2

see Fig. 3.7 on page 94).

1.1.2 Zero moment point

The Zero Moment Point (ZMP) is a point on the ground where the net moment

of the ground reaction forces acting on the robot has a zero horizontal com-

ponent1 [87, 86]. In single stance, when only one foot is in contact with the

ground, the ZMP is located either inside or on the edge of the stance foot. In

double stance, the ZMP can be either below one of the feet or anywhere be-

tween the feet (anywhere in the convex hull of the contact regions of the two

feet, called the support polygon). Relative locations of the ZMP and the projec-

tion of the Center of Mass (CoM) on the ground determine the overall motion of

the robot. For example, the CoM must be directly above the ZMP for the robot

to be completely stopped. When the CoM is not directly above the ZMP, the

ground reaction forces have a moment about the CoM; this moment drives the

CoM projection in the direction away from the ZMP.

Control over the ZMP location within the support polygon — e.g. with

appropriate ankle torques — can be used to control the overall motion of the

robot [85, 33]. For instance, in the standing balance task, the CoM has to be

above the support polygon at all times. Therefore, to best maintain standing

balance, the ZMP should be placed between the current CoM projection on the

ground and the closest edge of the support polygon, thus pushing the CoM

towards the center of the support polygon. This strategy can be extended to

produce statically-stable walking: balancing on one foot is alternated with the

1 More generally, a zero component along the surface of the ground, if the ground is not
necessarily level.

3

double stance phase where the robot’s weight is transferred from the hind to

the front leg. A ZMP controller can also be used alternately with a footstep con-

troller — such as one based on Pratt’s capture regions (Section 1.2) or on the

controllable regions described in this thesis — to produce dynamic walking or

to recover from large disturbances [56].

Because ZMP-based controllers primarily rely on ankle torques, it is neces-

sary for the robot to have large feet. If the feet are small, e.g. vanishingly small in

point-feet models, or when the ZMP is close to the edge of the support polygon,

the robot has small control authority over its ZMP and, hence, CoM location. In

such cases, the robot may have to take a step to avoid falling. Also, the ZMP

approach is originally based on static stability, which is not a requirement for,

and does not occur naturally in, human locomotion. Robots primarily based on

ZMP control, such as Honda’s Asimo [73], tend to show walking and running

gaits that do not resemble those of humans: they tend to have flat feet, bent

knees, high energy use [21].

1.1.3 Hybrid zero dynamics

The central idea of the Hybrid Zero Dynamics (HZD) approach is dimensional

reduction of the robot’s dynamics [89, 30]. Feedback controls are used on all

fully controlled degrees of freedom (internal joint angles) so as to effectively

make them functions (‘slaves’) of the uncontrolled degrees of freedom (ankle-

joint angles in point-feet robots).

The HZD problem is to design the slave functions so as to produce a steady

gait of the robot. The gait has to be stable and is sometimes picked to be in

4

some way optimal (e.g. maximally energy efficient). To find appropriate slave

functions, numerical optimization can be used with both a measure of stability

(such as eigenvalues) and energy cost included into the objective function [17].

Additionally, Grizzle [31] proposed using an event-based controller to change

some parameters of the slave functions — hence, the nominal gait of the robot

— in a discrete manner (say, once per step). This may allow the robot to change

its gait characteristics, such as speed, on-the-fly and increase robustness. The

HZD methods were successfully implemented to achieve steady walking of 2D

robots [17, 76] and of a 3D robot in simulation [18].

A drawback of the HZD approach is that it uses high-gain controls of the

internal (slaved) degrees of freedom. Such controls seem to tend to be ener-

getically expensive and produce non-compliant behavior that is not natural.

Also, HZD-based controllers realize precomputed trajectories which cannot be

changed online — but for parameter adjustment with event-based controls as

described above — to adapt to changes in the locomotion goals or environment,

e.g. to avoid an obstacle.

1.1.4 Model predictive control

The Model Predictive Control (MPC) method uses on-the-fly optimization to com-

pute the best control actions at any instant during locomotion [26, 47, 6]. For a

given current state of the robot, an optimization problem is formulated to find

optimal controls over a fixed time horizon into the future. An internal model of

both the robot and the environment is used in the optimization routine. The

optimality criteria may include stability, energy use, or any other desired ob-

5

jective; constraints can be incorporated to account for, say, actuation limits or

obstacles on the ground. The calculated solution — the optimal set of controls

— is implemented on the robot. The optimization problem is repeatedly solved

online at a high frequency to update the optimal control actions.

The MPC is a universal approach which allows one to consider various loco-

motion problems: any optimization objective and constraints can be specified.

The approach also naturally provides robustness: frequent update of the op-

timal control actions lets the robot promptly react to disturbances. However,

running frequent optimizations on-the-fly requires significant computer power.

This issue may be somewhat overcome by sacrificing accuracy of optimal solu-

tions for speed of computation, as demonstrated in simulation by Mordatch et

al. [54]. It seems likely that MPC methods will become more widespread with

the advance of faster computers and optimization technics.

1.1.5 Optimal control policies

As opposed to the MPC methods (Section 1.1.4) where control actions are deter-

mined by running on-the-fly optimizations, one can compute optimal controls

offline for each possible state of the robot. The offline optimization uses a dis-

cretization of the state space and typically employs the methods of dynamic pro-

gramming [8]. The optimal solution — optimal control policies (control actions) at

each discretization point — can be either used as a lookup table or fitted with

parameterized functions, thus defining a controller of the robot. The optimal

policies approach has been used for walking robots in simulation [48, 90, 45].

The approach is subject to the curse of dimensionality and, hence, its applica-

6

tion to many-degree-of-freedom models is problematic.

1.2 Capture regions

We now describe the capture region and viability theory concepts. They are

closely related to our controller design approach and are the true starting point

of this thesis.

The capture-regions concept was originally developed by Pratt, et al. [64, 66,

42]. The concept studies the ability of a biped to come to a full stop, in one, two,

or more steps. A ‘full stop’ can be standing on one foot, on both feet, or any

statically stable state of the robot.

For a given initial state, a point on the ground where the robot can step and

come to a full stop without taking any further steps, is called a one-step capture

point. The set of all such points is the one-step capture region. Similarly, the n-

step capture region is defined as the set of all points on the ground where the

robot can step and come to a stop in at most n steps in total. The limit of the n-

step capture regions as n→∞ is the∞-step capture region; it includes all possible

stepping locations which allow the biped to eventually come to a stop.

The capture regions are useful in designing a footstep controller: at each

instant of time, they show where the robot may step to to be able, using appro-

priate subsequent control actions, to come to a stop, if desired, and, hence, to

avoid falling. Stepping inside the capture regions at each step is sufficient to

be capable, using the given robot and actuators, to totally avoid falling. Such

strategy is used by Pratt et al. [42, 63] to design a footstep controller for a 12-

7

degree-of-freedom robot in 3D. In the beginning of each step (just after toe-off),

the next footstep location is planned based on the desired speed of the robot

and the current stance foot position. Then, the planned stepping location is ad-

justed, if necessary, to be inside the one-step capture region corresponding to

the current state of the robot. During the swing phase, the planned footstep is

continuously recomputed to react to possible perturbations and, hence, changes

of the one-step capture region. Pratt et al. use the Linear Inverted Pendulum

model with finite-sized feet [42] as a proxy for the robot, to approximate the

capture regions. This stepping controller is shown to generate walking motion

(both in simulation and of the real robot) with successful recovery (in simula-

tion) from sideways and forward pushes [63].

The size of the capture regions can be an indirect measure of robustness: for

smaller capture regions, the robot is closer to being non-capturable (there being

no possible place to step that avoids a fall) and a smaller random disturbance is

required to cause the robot to fall [42, 63]. However, the capture regions do not

indicate the maximum magnitude of disturbances that the robot can survive,

nor what type of disturbances the robot is most sensitive to. Such knowledge

about disturbances may be useful for robustness optimization of the controller.

Also, as Pratt et al. [63] point out, one is often interested in maintaining a desired

speed of the robot, rather than making it come to a stop. Therefore, the capture

regions are a tool restricting permissible controls (stepping locations), rather

than a means to achieve a desired trajectory of the robot.

The capture regions are defined for a given specific initial state of the robot.

Koolen et al. [42] introduce the viable-capture basins to account for different initial

states. The n-step viable-capture basin is a region in the state space that includes

8

all states for which the model is n-step capturable, i.e. is able to come to a stop

within n steps. That is, it is the set of all initial states for which the n-step capture

region is non-empty. Similar to the capture regions showing ‘good’ stepping

locations, the viable-capture basins show ‘good’ states.

1.3 Viability theory

Developed by Aubin [4, 2, 3], viability theory studies behavior (trajectories) of

a controlled dynamical system with passage through given regions of the state

space not allowed. Such passage constitutes a failure. Of interest are the abilities

of the system to avoid a failure and to reach a specific target state or a set of

states.

Let K be the region in the state space that includes all allowed states, i.e. all

states that satisfy a given set of constraints. For example, for walking robots,

one may consider the non-falling constraint — hence K is all non-fallen states of

the robot. An evolution of the system is called viable, if it always remains inside

K, that is never fails. The set of all initial states for which there is at least one

viable evolution is called the Viability Kernel. When inside the viability kernel,

the system is able, with appropriate controls, to never fail (e.g. for walking

robots, to never fall down). For any initial state outside the viability kernel it is

impossible to avoid a failure.

Next, assume C to be a desired state or set of states of the system; C is called

the target region. For walking robots, an example of such a target is all states for

which the robot is standing still, as for Pratt’s capture regions [64, 42] (Section 1.2

above). For a given target C, the Capture Basin of C is the set of all initial states

9

for which there is at least one viable evolution reaching C in a finite time. That

is, the capture basin includes all states from which the target can be reached

with appropriate controls.

Some of the basic problems of the viability theory are: find, or approximate,

the viability kernel and capture basin for a given system [70, 71, 23]; construct

a controller that attempts to keep the system inside the viability kernel at all

times and to drive the system to a given target [7, 81, 72]. Updating the viability

kernel and capture basin on-the-fly may help adapt the controller to possible

changes in the system due to, say, external disturbances or changes in the envi-

ronment. The viability theory was introduced into the field of legged locomo-

tion by Wieber [91, 92, 93], who studied approximation of the viability kernel of

a legged robot. However, a controller design accounting for the viability kernel

was not proposed. Such a controller, for instance, would produce the basin-of-

attraction of a given desired trajectory that is maximally close to the viability

kernel, thus maximizing the range of perturbations the robot can recover from.

1.4 Control approach in this thesis

Here we design a maximally robust walking controller for a planar bipedal

robot. The ideas in the following paragraphs are discussed in more detail later

in the thesis. Our design approach uses the concepts of the viability theory (Sec-

tion 1.3) and is a generalization of Pratt’s capture-regions ideas (Section 1.2).

First, we generalize Pratt’s viable-capture basins to consider any goal of lo-

comotion (e.g. a specific desired trajectory), as opposed to just coming to a stop.

We define the n-step controllable region Cn as all states from which the robot can,

10

with appropriate controls, reach a given target by taking at most n steps and

not fall.2 The ∞-step controllable region C∞ is the limit of Cn as n→∞. When

inside C∞, the robot is always able to return to the target. Hence, one goal for

our controller is to keep the robot inside C∞ at all times.

Next, we study controls of a robot by considering the extended state space

which includes both states and controls. A point in such extended space is a

combination (q, u) of a state q and controls u to be used in that state. Similar

to the regions Cn, we define the extended n-step controllable regions C̄n — regions

in the extended state space — as all combinations of states and controls which

allow the robot to reach the target in at most n steps. The ∞-step region C̄∞ is

the limit of C̄n as n→∞. For the robot to always be able to return to the target

(to remain inside C∞), it is sufficient to always choose controls inside C̄∞ that

correspond to the current state of the robot. Note, that our extended control-

lable regions are a generalization of Pratt’s capture regions, when considering

footstep locations as high-level controls of the robot — see more details in Sec-

tion 2.6.5.

A curve (hyper-surface) inside the region C̄∞ defines a controller for a given

target of the robot. Our design problem is to find a controller curve that nearly

maximizes robustness and, if possible, is approximately optimal in some other

regards, such as energy efficiency, speed of convergence to the target, and sim-

plicity. Robustness is maximized by choosing controller curves that are possibly

farther inside the region C̄∞, thus making it less likely that a random perturba-

2 What we term here controllability (or controllable) is traditionally called capturability in the
Viability Theory [3]. Both terms are defined with respect to an arbitrary target of the system.
However, in the legged robotics community a conflicting definition is used: ‘capturability’ is
associated with Pratt’s capture-regions concept [64] and assumes the particular target of stand-
ing still. To avoid confusion, we use the term ‘controllability’ to mean something close to it
definition in the classical Control Theory [39].

11

tion puts the robot outside C∞. Optimization with respect to other objectives

can be done by evaluating all points inside C̄∞ with respect to each of the ob-

jectives. We make the robot energy efficient by choosing a target trajectory that

approximately minimizes the energy cost of walking.

Similar to controllability of a biped, we also study viability: the ability of a

robot to avoid falling down. We define the n-step viable and extended n-step viable

regions which show all states and corresponding controls that let the robot take

at least n steps and not fall. Both the viability and controllability concepts help

us make two claims about bipedal locomotion (Section 2.3) and then justify the

claims for two simple models of walking.

1.5 Contributions of the thesis

The main results and contributions of this thesis are as follows.

1. Viability and controllability framework. We generalized Pratt’s capture-

region concepts [42] to define the viable and controllable regions and their

extended counterparts. These regions study the ability of a robot to avoid

falling and to reach a given locomotion goal. The viability and controlla-

bility framework can be used as a tool in the analysis of stability, robust-

ness, and other properties of a biped and its controllers. The framework

provides a controller design method that nearly optimizes robustness and

some other objectives.

2. We introduced the extended state space of a robot. A point in this space

is a pair (q, u) of the state q and controls u to be used in that state. Curves

12

(surfaces) in the extended space are controllers of the robot. Analysis of

the extended state space helps one study, compare, and design robot con-

trollers.

3. Design of a maximally robust walking controller. We used the viability

and controllability framework to design a high-level walking controller

for the 2D robot Cornell Ranger. Once per step, the controller provides

target values for the next step-length and the push-off magnitude at the

next heel-strike. The controller provides stability around the nominal tra-

jectory, is nearly maximally robust, has low energy cost, does not require

significant online computations, and is simple in structure.

4. Larger steps are good. We discovered that increasing the step length is

preferable for the robot Cornell Ranger in response to any disturbance.

Whether walking too fast or too slow, taking bigger steps makes the push-

offs more effective at controlling speed. Because we modeled Ranger with

a simple point-mass model, we believe that this result applies to most

bipedal robots.

5. ‘Viable is controllable’. We considered the following claim about bipedal

locomotion (a slight generalization of Pratt’s [38]): if a robot can avoid

falling, then in most cases it also can reach any given target (e.g. a specific

trajectory). We used the viability and controllability concepts to justify the

claim for two simple point-mass models.

6. ‘Two steps is almost everything’. We considered the following claim

about bipedal locomotion (a slight generalization of Koolen et al.’s [38]):

if a biped can reach a given target at all, in most cases it can do so within

two steps. Practically, in controller design (e.g. in model-predictive con-

trol), there is no need, at least for balance purposes, to plan the robot’s

13

motion more than two steps ahead. We justified the claim for two sim-

ple point-mass models and provided supporting evidence from human-

balance experiments.

14

CHAPTER 2

VIABLE AND CONTROLLABLE REGIONS

We would like to understand how a person does, and a robot might, both not

fall down and also achieve desired goals of locomotion, such as speed, direction

or path of motion, and foot placements. We try to understand the avoidance

of falls with the concept of viability, and the achieving of different locomotion

tasks through controllability.

The ability of a robot to avoid a fall or perform a specific task depends on

the actuators available to it. A physically realistic model assumes limitations

on the actuator capabilities, such as the maximum torque produced by a motor.

By feasible controls of the robot we will mean controls (actuation, control actions)

that can be implemented on the robot for given actuation limitations.

We will focus in our studies on how the state of a robot (positions, angles,

and rates) changes after each step. We say that a step starts at midstance, which

is defined as the point of local maximum in potential energy of the system, and

ends at the next midstance. For simple point-foot planar bipeds (e.g. those pre-

sented in Sections 2.4.1 and 2.4.2), the midstance is the instant when the center

of mass passes exactly above the stance foot. The midstance can be viewed as

a Poincaré section of the system, while the map from a state of the robot at a

midstance to the state at the next midstance a Poincaré map. Looking only at

states at the Poincaré section of the robot makes the problem both discrete and

lower-dimensional. In the rest of this thesis, by saying ‘state’ we will usually

mean a state of the robot at this Poincaré section, unless otherwise stated.

15

2.1 Viable regions

One approach to understanding stability is through viable regions. These are

the sets of states from which it is possible for the robot to avoid failure and also

take one or more steps. A robot fails if it reaches a failed state. The definition of a

failed state that we will use is a state of the robot, for which one, or both, of the

following is true:

• a part of the robot other than the feet touches the ground (i.e. the robot

has fallen);

• one of the constraints, if any, imposed on the robot is not satisfied.

Examples of possible constraints include actuator limitations, allowed foot

placement locations, direction, or speed of motion (see Section 2.5.1 on page 33

for more details). Any non-failed state for which the robot is at a midstance, is

called 0-step viable, and the collection of all such states is the 0-step viable region

V0.

Thus, the region V0 is a subset of the state space of the model; V0 includes

all states at midstance allowed for the robot. We next look at the states, start-

ing from which the robot is able to make one or more steps — these are not

necessarily the entire V0. A given state of a robot is called 1-step viable, if it is

0-step viable and there is a feasible control which allows the robot to take (at

least) one step without failing. The 1-step viable region V1 is the collection of

all such states. Note, that making a step requires reaching the next midstance

(next Poincaré section) — this condition excludes the situations when the robot

is headed down, i.e. falling, the whole time. Similarly, the n-step viable region Vn

16

is all 0-step viable states, from which it is possible for the robot to make at least

n steps and not fail. Any element of Vn is an n-step viable state. Viable regions are

shown schematically on Fig. 2.1.

We can also see that the regions Vn form a sequence of nested regions:

Vn ⊂Vn−1 for any n≥ 1. Indeed, if the robot is able to take at least n steps without

failing, then, of course, it can take at least n− 1 steps as well. In this way, the

n-step viable region Vn can be thought of as all (midstance) states of the robot,

from which it is possible, for given constraints and feasible controls, to reach

Vn−1 by making exactly one step. This one-step relation between Vn and Vn−1 is

useful for computation of viable regions, as shown in Section 2.7.2 on page 55.

On the other hand, states which are in Vn−1, but outside of Vn (i.e. in Vn−1 \Vn)

are such that from them the robot can step n− 1 times, but no feasible control

will be able to prevent it from failure on the n-th step. For example, if the robot

is in a state in V0 \V1, it is not failed now, but will necessarily fail before making

a single step.

Of large interest is the limit of the sequence {Vn}, which we call the ∞-step

viable region V∞. It includes all points in the Poincaré section from which the

biped can make an arbitrarily large number of steps. In other words, if a robot is

in V∞, then there exist feasible controls that allow it to ‘never’ fail (here we mean

never step-wise — stepping indefinitely does not necessarily mean avoiding a

failure within any finite interval of time, unless duration of each step is con-

strained from below by a positive number). On the other hand, if a robot is in a

state outside of V∞, then no feasible control will be able to prevent it from failing

eventually, i.e. within a finite number of steps. Hence, one of the basic objec-

tives for a robot controller is to always keep the robot inside the ∞-step viable

17

failed states

state spacepossible to make
n steps

(i.e. to stay in V0
for n steps)

possible to avoid
failure forever

possible to make
1 step

(i.e. to stay in V0
for one step)

V0

all non-failed
states

Vn

V∞

V1

failed states

Figure 2.1: Schematics of viable regions. This figure schematically shows n-step vi-
able regions Vn for a robot. The region V0 is the set of all states in Poincaré section (mid-
stance) for which the robot is not failed (is not fallen and meets all given constraints). Vn
is a subset of Vn−1 and includes all initial states at midstance from which it is possible,
by means of feasible controls, to take at least n steps without failing. The ∞-step viable
region V∞ is all states from which it is possible to take infinitely large number of steps
without failing — it is the limit of the sequence of sets {Vn}. Note, taking an infinite
number of steps does not necessarily yield avoiding a failure forever time-wise, unless
duration of each step is bounded from below by a positive number.

region V∞. The region V∞ is equivalent to the viability kernel — a concept from

the viability theory discussed in Section 1.3 above.

2.2 Controllable regions

We define controllable regions with respect to more specific goals, instead of just

the goal of not failing. We may have a specific overall configuration, location on

the ground to stand at, or point in the phase space that we desire to achieve (see

18

Section 2.5.2 on page 35 for examples). For a given goal, let C0 be the set of all

states at midstance satisfying the goal. Then we say that C0 is the target region

(0-step controllable region), and any element of C0 a target state (0-step controllable

state). Note, that there can be more than one target state, i.e. more than one point

in C0 (it could be several points, a region in the state space, or a set of disjoint

regions in the state space).

The n-step controllable regions are defined in a way similar to the regions Vn:

Cn is the set of all 0-step viable states from which the biped can, with appropriate

feasible controls, reach one of the target states in C0 in n or fewer steps and

without failing. Alternatively, Cn is all states in V0, from where the robot can get

to Cn−1 within one step. As with the viable regions, this one-step relation can

be conveniently used in numerical calculation of the controllable regions — see

Section 2.7.1 on page 49 for details. The sequence {Cn} is nested (Cn−1 ⊂Cn for

any n≥ 1), and its limit is called the ∞-step controllable region C∞. It is the set of

all points in the Poincaré section from which the biped can, with appropriate

feasible controls, either reach the target region C0 in a finite number of steps or

approach it asymptotically. The controllable regions are shown schematically in

Fig. 2.2.

Suppose the goal is all ‘captured’ states of the robot (all states where the

robot can avoid falling down ever without making a single step, e.g. standing

still — the concept introduced by Pratt [64, 42] and discussed in Section 1.2). In

this case, regions Cn are equivalent to Pratt’s n-step viable-capture basins [42].

So the n-step controllable regions for an arbitrary target C0 are a generalization

of the viable-capture basins concept.

The controllable regions Cn depend on the chosen target C0. For each n, the

19

target is not reachable

state space

C0
= all target states

possible to reach
the target in n steps

Cn

possible to reach
the target in 1 step

C1

possible to
eventually reach

the target
C∞

Figure 2.2: Schematics of controllable regions. Examples of n-step controllable re-
gions Cn for a robot are schematically shown on this figure. All Cn are subsets of the
Poincaré section of the robot. For a given goal (e.g. standing upright), the target region
C0 is the collection of all states which satisfy the goal. Cn consists of all initial states
of the robot, from which it is possible, with given constraints and feasible controls, to
reach C0 by taking n or fewer steps without failing. The limit of the sequence {Cn}, the
∞-step controllable region C∞, is all states from which it is possible to either reach the
target in a finite number of steps or approach it asymptotically. If the biped is in a state
outside of C∞, no feasible control will let it reach the target.

region Cn can be represented as the result of a set-valued mapping, applied to

C0. We define such mapping for the 1-step controllable region. Let 2V0 be the set

of all subsets of V0 (i.e. the power set of V0). Define C as a function from 2V0 to

2V0 , such that

C(C0) = C1. (2.1)

We call the map C the controllability map of the system. The controllability map

assumes its argument, a region in V0, to be the target region, and returns the 1-

20

step controllable region corresponding to this target. In the case of a single-point

target C0 = {q}, we will use a simplified notation C(q), instead of C({q}).

Next, consider the n-step controllable region Cn as all states, from which the

region Cn−1 can be reached within one step. Therefore, Cn is the 1-step control-

lable region corresponding to the target Cn−1:

Cn = C(Cn−1), for n ≥ 1. (2.2)

By similarly expressing Cn−1 in terms of Cn−2, then Cn−2 in terms of Cn−3, and so

on, the above equation can be transformed as follows, to represent the region Cn

as a function of C0:

Cn = C(Cn−1) = C(C(Cn−2)) = ... = Cn(C0).

Therefore, the map Cn, the n-th power of the controllability mapping (2.1), is

a set-valued function, which for any input target region C0 returns the corre-

sponding n-step controllable region Cn:

Cn = Cn(C0), for n ≥ 1. (2.3)

For the∞-step controllable region C∞, the limit of the sequence of Cn, we use the

following notation:

C∞ = C∞(C0), (2.4)

where C∞ : 2V0 → 2V0 is the point-wise limit of the sequence of the functions Cn

as n→∞.

Unless otherwise stated, in this thesis by Cn we mean the n-step controllable

region corresponding to a specified target region C0. For controllable regions

corresponding to a target X, different from C0, we use the map Cn to explicitly

point out the target: Cn(X) (or Cn(q) for a single-point target X = {q}).

21

2.2.1 Strict controllable regions

In addition to the controllable regions Cn, introduced in Section 2.2 above, we

also define the strict n-step controllable regions Ĉn. We do not study the regions

Ĉn in detail, but only employ them in this thesis to define the extended con-

trollable regions (see Sections 2.6.2 and 2.6.3) and to numerically compute the

viable regions (Section 2.7.2), extended viable regions (Section 2.7.3), and ex-

tended controllable regions (Section 2.7.4).

For a given model, constraints, feasible controls, and a target region C0, we

say that a 0-step viable state q of the robot is strict n-step controllable, if there is a

way for the robot to start the motion in the state q, take exactly n steps without a

failure, and reach a target state in C0 at the end of the n-th step. The strict n-step

controllable region Ĉn is the set of all strict n-step controllable states.

Similar to the controllability map C for the controllable regions Cn (see equa-

tion (2.1) on page 20), we describe the strict controllable regions Ĉn in terms of a

set-valued map Ĉ acting on the target C0. We say that the map

Ĉ : 2V0 → 2V0 , s.t. Ĉ(C0) = Ĉ1, (2.5)

is such that for any target region C0 (the input) it returns the corresponding strict

1-step controllable region Ĉ1. Here 2V0 is the power set of V0, i.e. the set of all

subsets of V0. We call the map Ĉ the strict controllability map of the system.

The region Ĉn can be described as all states, starting from which the robot

is able to reach a strict (n− 1)-step controllable state (i.e. to reach the region

Ĉn−1) by making exactly one step and not failing. That is, Ĉn is the strict 1-step

controllable region Ĉ(Ĉn−1) corresponding to the target Ĉn−1, and we write

Ĉn = Ĉ(Ĉn−1) = Ĉ(Ĉ(Ĉn−2)) = ... = Ĉn(C0).

22

Thus, each region Ĉn is represented by the corresponding power of the map Ĉ:

Ĉn = Ĉn(C0), for n ≥ 1. (2.6)

The strict ∞-step controllable region Ĉ∞ is defined as all states at midstance, from

which the robot can, with appropriate feasible controls, approach the target C0

asymptotically. It is the limit of the regions Ĉn as n increases to infinity. We

represent it by the set-valued map Ĉ∞, the point-wise limit of the maps Ĉn:

Ĉ∞ = Ĉ∞(C0). (2.7)

Below in this thesis, by Ĉn we mean the strict n-step controllable region cor-

responding to the specified target region C0. Strict controllable regions corre-

sponding to a different target X are referred to as the value of Ĉn(X).

Each region Ĉn is a subset of the corresponding n-step controllable region Cn,

and the following relation holds true:

Cn = Ĉn ∪Cn−1. (2.8)

That is, as illustrated on Fig. 2.3, the region Cn is all states, from which the target

can be reached in exactly n steps (i.e. all points in Ĉn), plus all states from which

the robot can reach C0 in n− 1 or fewer steps (i.e. all points in Cn−1). Substitution

of n = 1 in equation (2.8) yields the relation between the controllability maps C

and Ĉ:

C(C0) = Ĉ(C0) ∪C0. (2.9)

However, if each target state is on a (1-step) periodic trajectory, then the regions

Cn and Ĉn, as well as the maps C and Ĉ, are the same. Note also, that as opposed

to the regions Cn, the strict controllable regions Ĉn do not necessarily have a

nested structure.

23

state space

Cn-1

boundary of C
n

Ĉn

possible to reach the
target within n-1 steps

Cn
possible to reach the
target within n steps

possible to reach
the target in exactly

n steps

bound
ar

y

of C

n-
1

Figure 2.3: Controllable and strict controllable regions. The figure contrasts the n-
step controllable region Cn with the strict n-step controllable region Ĉn, and illustrates
equation (2.8) on page 23. Cn is all states, from which the robot is able to reach a given
target C0 in n or fewer steps. Ĉn includes all states, from which the robot can reach C0 in
exactly n steps. The strict region Ĉn, shown as the cross-hatched area, is a subset of Cn.
The regions Ĉn and Cn−1 together form the entire region Cn, and may also have points
in common. If the target states in C0 allow (1-step) periodic motion, the n-step regions
Cn and Ĉn are the same.

2.2.2 Disturbances, model errors, and noise

For now, in construction of the viable and controllable regions concepts, we as-

sume no disturbances occur during the motion and both the model knowledge

and all sensor inputs, if any, are perfect. It is possible, though, to take them into

consideration if characteristics of the noise and possible disturbances/errors are

known. For example, one might introduce an additional requirement that all

goals and constraints at each step are met for any disturbances and model er-

rors within given bounds. We will use this approach in the design of a walking

controller for a biped presented in Chapter 6.

24

2.3 Viability and controllability conjectures

At this point we have not specified the mechanical model(s) (number of links,

actuator limits, etc) for which we are going to apply the concepts of viability

and controllability. Nonetheless, we make statements, which we think are true

for most bipedal robots. However, exceptions exist and their examples are men-

tioned in this section below.

2.3.1 Viable is controllable

Here we suggest a relation between ∞-step viability and ∞-step controllability.

Suppose that the target region C0 is entirely inside the ∞-step viable region:

C0 ⊂ V∞. Then, once the robot is in a target state, it is able to step forever (step-

wise). Therefore, the∞-step controllable region C∞ (as well as all Cn) is a subset

of V∞ too:

C0 ⊂ V∞ =⇒ C∞ ⊂ V∞ (2.10)

From points in C∞ the robot can either reach the target and then step indefinitely

or asymptotically approach the target, thus, again, taking an infinite number of

steps.

The statement (2.10) is a true, logically established result. We cannot make

it stronger staying mathematically precise — however, we make a less precise

statement about the difference V∞ \ C∞ between the two sets. We claim that

for most robots and most targets, the states from which it is possible to avoid

failing, yet not possible to reach the target, are rare or nonexistent:

Claim A (Viable is Controllable): In most cases and for most bipeds, the

25

ability of a biped to take an arbitrary large number of steps is equivalent

to its ability to reach any specific target. More formally, for most robots,

the set of states which are inside V∞, but outside of C∞, is a zero-measure

set for any target inside V∞: µ(V∞ \C∞) = 0 if C0 ⊂ V∞ 1.

The claim is illustrated on Fig. 2.4a. Examples of the robots and targets for which

the claim is not correct are provided in Appendix A.

Pratt et al. make a similar statement in [38, 42], where they consider the

target C0 to be all captured states. They claim that the part of the state space,

from which the robot is able to never fall down, but not able to ever reach a

captured state (i.e. V∞ \ C∞) is ‘small’. One exception, suggested in [42], to both

Pratt’s and ours claim is purely passive walkers, which, once on a periodic gait,

keep walking forever, but can never come to a stop (thus, never reaching the

target, if the target is standing still) — see Appendix A for more details.

Although we cannot prove the V∞ ≈C∞ claim above, we test it on simple

walking models often used in the robotics community: the Inverted Pendulum

(IP) model in 2D [43, 36] (introduced in Section 2.4.1 and discussed in detail in

Chapter 3) and Linear Inverted Pendulum (LIP) model in 2D [40] (introduced

in Section 2.4.2 and discussed in Chapter 4).

2.3.2 Two-step controllability

In addition to Claim A, we slightly generalize a hypothesis made by Koolen et

al. [42] — we make the following statement about a general model of a biped

1By µ(·) we denote a measure (metric of volume) in the Poincaré section of the model.

26

failed states

state space

V0
= all non-failed states

failed states

possible to
eventually reach

the target

C∞

C0
all target

statesfailure can be
prevented from

states inside

V∞

V∞ and C∞ are ‘close’:
if possible to not fail, then usually possible to reach target

(a) ‘Viability equals controllability’ claim

target is not reachable

state space

C0
all target

states

Cn

C1

possible to
eventually reach

target

C∞

possible to
reach target

in 2 steps

C2

C∞ and C2 are ‘close’:
if target is reachable, usually it can be reached in 2 steps

(b) ‘Two-step controllability’ claim

Figure 2.4: Illustration of controllability statements. The figure illustrates two state-
ments we make in Section 2.3, which we think hold true for most bipeds. (a) Claim: for
any target C0 inside the viability kernel V∞, the difference between V∞ and the ∞-step
controllable region C∞ is ‘small’. In other words, if the robot can avoid a failure, then
in most cases it can reach a given target. Exceptions, such as passive walkers, exist. (b)
Claim: for any target C0 inside the viability kernel, the 2-step controllable region C2 is
most of C∞. That is, if the robot can get to the target at all, in most cases it is capable of
doing it in two steps. We test the claims on simple IP and LIP models in 2D.

and its controllable regions with an arbitrary target:

Claim B (Two-step controllability): For a given model of a biped and an

arbitrary target, if it is possible for the biped to reach the target at all, in

most cases it can be done in two or fewer steps. More formally, assume the

target C0 is inside the viability kernel. Then the 2-step controllable region

C2 is most of the∞-step controllable region C∞: µ(C∞ \C2) � µ(C∞) for any

C0 ⊂ V∞.

An illustration is provided in Fig. 2.4b. The statement suggests that in designing

a controller (e.g. for recovering from a disturbance or path planning) there is no

need, except possibly for some extreme situations, to plan more than two steps

ahead. As opposed to Koolen et al.’s conjecture, which considers only captured

states (e.g. standing still) as possible target states, Claim A allows an arbitrary

27

target region in the viability kernel.

Note, that taking into account the Viable is Controllable Claim A (see Sec-

tion 2.3.1), the Two-Step Controllability Claim B also suggests: in situations in

which it is possible to avoid failing, it is also possible to reach any given target

state (in the viability kernel) by taking two or fewer steps.

There is some evidence to our claim coming from treadmill experiments with

humans [35, 74, 59, 61, 37]. In the robotics community several groups have used

two-step policies to control a biped [46, 83, 15]. We test the two-step controlla-

bility ideas on the planar IP and LIP models of walking, and discuss the ideas

in more detail in Chapter 5.

In the remainder of the Chapter 2 we describe the two simple 2D models of

walking (IP and LIP). We then discuss several aspects of viable and controllable

region concepts, such as possible goals and constraints. Several examples and

special cases of these concepts are provided, in application to both the consid-

ered simple and more general models. Finally, we describe ways to compute

viable and controllable regions for a given model of a walking robot.

2.4 Simple models of walking

For this thesis we consider two simple models of walking: the Inverted Pendu-

lum (IP) [43, 36, 84] and Linear Inverted Pendulum (LIP), [41, 42], both in 2D.

We give description of the IP and LIP models in this section; detailed discussion

of both models, including their equations of motion, viable and controllable re-

gions, can be found in Chapters 3 and 4 respectively.

28

y

x
push-o� along stance leg
(just before next collision)

m = 1

θ

xst

p

O

swing leg

g = 1

x

l = 1

next stepping
location

G
Inverted Pendulum

stance leg

(a) IP model in 2D

y

x

GyG

O

stance leg
telescopic actuator

constant CoM height

lmax = maximum leg length

xh

(swing leg is
not shown)

Linear Inverted Pendulum

xst

next stepping
location

l

m = 1
g = 1

(b) LIP model in 2D

Figure 2.5: IP and LIP models of walking in 2D. Two simple planar models of a
biped are shown. a) The Inverted Pendulum (IP) model has a point mass G and two
rigid inextensible massless legs. Collisions are assumed instantaneous and completely
inelastic. The system has two phase variables: angle θ and angle rate θ̇ of the stance
leg. There are two control values per each step: push-off impulse p along the stance
leg just before the collision instant, and step length xst determining time and location
of the collision. b) The Linear Inverted Pendulum has a point mass and two massless
telescopic legs, with lmax being their maximum allowed length. Telescopic actuators in
the legs behave such as to maintain constant height yG of the hip above the ground.
Two controls of the model in each step are the step size xst and step time tst. The only
dynamic variable is the relative horizontal position of the hip xh. For both models, we
assume the massless swing leg can be moved instantaneously into any position, without
influencing the dynamics of the stance leg.

2.4.1 Inverted Pendulum in 2D

The simple IP model in 2D consists of a point mass m at the hip and two rigid

inextensible legs with point feet. The legs are assumed to be massless and of

the same constant length l. We consider only walking motion of the robot on a

flat ground — hence, the constraint that at least one foot is on the ground at any

time. The model is shown on Fig. 2.5a.

When the swing leg hits the ground, a collision happens. We assume that

collisions are plastic (the colliding foot has zero velocity after the impact), in-

29

stantaneous, that the hind (former stance) leg leaves the ground immediately

after the instant of collision (no double stance), and that there is no impact from

the ground on the hind leg. Just before the instant of each collision, a push-off

impulse is applied along the stance leg. The amount p of the push-off is chosen

by the controller. We use such preemptive push off because it seems to capture

some essence of human gait [94] and may be an efficient way to put energy into

the system to compensate for collisional loses [43, 69, 77]. Thus, each heel-strike

consists of a push-off impulse along the stance leg, followed by a ground reac-

tion impulse along the swing leg. These two impulses cause the hip velocity

(hence, energy of the system as well) to be discontinuous at heel-strike, while

there is no discontinuity in the configuration of the robot.

The full system has three degrees of freedom: position x of the stance foot

on the ground and rotations of the two legs. However, because the legs are

massless, motions of the swing leg do not influence dynamics of the stance leg

— for the Newtonian dynamics, only the angle θ of the stance leg is a dynamic

variable. We assume that the controller can instantaneously move the swing leg

into any desired position, thus determining the time and location of the next

heel-strike. We characterize the control of the swing leg by the length xst of the

next step (the distance between the two feet at heel-strike). Note, that there

is no control of the dynamics of the system between collisions — the control

only determines the time and location of the next heel-strike and the push-off

amount at the next heel-strike. Thus, our IP model is a system with a single

dynamic degree of freedom θ, two phase variables (angle θ and angular rate θ̇),

and two control parameters per each step: the step size xst and the push-off p.

We also describe the extension of the model to 3D, the 3D IP model, in Ap-

30

pendix E.

2.4.2 Linear Inverted Pendulum in 2D

The Linear Inverted Pendulum (LIP) model shown on Fig. 2.5b, like the IP

model, has two massless legs and a point mass at the hip [41, 40]. But instead

of legs being of constant length, they are telescopic with actuators acting so as

to keep the center of mass G at a fixed height yG above the ground. One of the

big advantages of having this constraint is that it leads to a linear ODE gov-

erning the motion of the system, making it easier to work with. In contrast to

discontinuous velocities during IP model collisions, the LIP model experiences

no impulses at the instant of collision and velocities are continuous at all times.

As with the IP model, we only consider a single stance walking motion —

exactly one foot is in contact with the ground at any instant of time and colli-

sions are instantaneous. Because the swing leg is massless, we assume it can be

instantaneously set by the controller to any angle and any length not exceed-

ing the maximum allowed leg length lmax. The system has only one dynamic

variable, which defines motions of the stance leg and which we choose to be the

horizontal position xh of the hip relative to the stance foot. Two available control

parameters per step determine where and when to take a step: the step length

xst and step time tst (by which we mean the time from the midstance, i.e. the

beginning of the step, to the heel-strike).

Notice, that in the LIP model the compressive force in the stance leg is al-

ways proportional to its total length, making the stance leg, in effect, a zero-

rest-length compressive spring. This is shown in more detail in Chapter 4.

31

2.4.3 Poincaré section

We chose the Poincaré section to be at midstance, the point along the robot’s

trajectory where the potential energy reaches its local maximum. For both the

planar IP and LIP models this is also the instant when the stance leg is vertical

(for the LIP model, the potential energy of the stance leg, acting as a compressive

spring, is maximum when the leg’s length is minimum).

Both the 2D IP and LIP models have only one essential dynamic variable,

resulting in a 2-dimensional phase space. Therefore, the Poincaré section is one-

dimensional and can be described only by the (horizontal) speed v of the CoM

(the hip) at midstance. In our viability and controllability analysis of the IP and

LIP models, we will be looking at how the speed of the robot changes from one

midstance to the other.

2.5 Special cases, examples, and applications

We proceed to discuss in more detail different aspects of viable and controllable

regions. These include constraints, goals, and walking controllers for a robot.

We will provide different examples and suggest several possible applications

of viable and controllable regions. One of the applications is design of robust

walking controllers, which we describe in Chapter 6.

32

2.5.1 Constraints

We want the biped to never fail, i.e. never fall down and always satisfy all

constraints imposed on it. For the IP model, we define falling down as when

the hip passes through the ground. For the LIP model the hip never changes

height, so another definition of failing is needed. Instead, we say the LIP model

fails if the length l of the stance leg exceeds its prescribed maximum allowed

value lmax. For both models we also require that the robot reaches midstance

during each step.

Besides these basic requirements, we sometimes impose additional con-

straints on the model which have to be satisfied during each step of walking.

Such constraints can be used to represent restrictions and features of the phys-

ical robot, its complicated model, or the environment. Examples include (both

for our simple planar models and more general bipeds):

(i) The duration of a step must be at least tmin (a fixed positive number). This

constraint aims to make sure that there is enough time for the actuators to

move the swing leg to a desired position. It can serve as a proxy for the

swing-leg actuator limitations, which are necessarily present in all physical

robots.

(ii) The stance leg actuator effort (e.g. push-off impulse for the IP model and

telescopic actuator force for the LIP model) must not exceed a fixed limit.

This represents either actuator limitations or may be used to reduce ener-

getic costs of the system.

(iii) The foot placements must always be along a given curve or line on the

ground, or inside given ‘stepping stones’ (sequence of given points or

33

states for which
constraint A1 is violated

state space

states for which
constraint A2 is violated

C∞
for constrained model

C∞ for
unconstrained

model

C0
target region

Figure 2.6: Influence of model constraints on viability and controllability. Additional
constraints imposed on the model reduce the size and change the shape of viable and
controllable regions. We illustrate this on the C∞ region, but the reasoning is the same
for all viable and controllable regions. The boundary of C∞ for a given (unconstrained)
model and a fixed target is shown by a dashed line (which coincides with the solid line
on the sides). Each introduced constraint may cut off a part of C∞, as the corresponding
states cease to be∞-step controllable. What remains is the C∞ region for the constrained
model, shown by the darkest shaded region. Changes to the viable and controllable
regions induced by individual constraints may help understanding importance of these
constraints for robustness of the model.

small regions on the ground). This constraint can be used for certain navi-

gation tasks, such as following a given path or obstacle avoidance.

(iv) The speed and/or direction of motion of the CoM must be within fixed

bounds. This requirement aims to prevent control actions from signifi-

cantly changing the global motion of the robot (e.g. when it is desired to

move at a certain speed).

The addition of one or more constraints to the model may reduce the size

(and change the shape) of the viable and controllable regions. We illustrate this

on Fig. 2.6. For example, consider the∞-step controllable region C∞ for a given

model and a fixed target C0. For any state inside C∞, there is at least one tra-

jectory that starts from this state and eventually reaches (or asymptotically ap-

34

proaches) the target. However, with new constraints introduced, some states in

C∞ may cease to be∞-step controllable in that all trajectories going from them to

the target violate one of the new constraints. Such states are not in the C∞ region

anymore. Thus, the ∞-step controllable region for the constrained model (Cc
∞)

is a subset of that for the unconstrained model (C∞): Cc
∞ ⊂ C∞. Similar logic can

be applied to all viable and controllable regions: Cc
n ⊂ Cn, Vc

n ⊂ Vn, Vc
∞ ⊂ V∞. We

conclude that each additional constraint introduced to the model may ‘cut off’

parts of the viable and controllable regions. More insights about the influence

of constraints can be found in Section 2.7.5 on page 61.

Changes in viable and controllable regions due to individual constraints can

help understanding the nature of these constraints and their importance for ro-

bustness. For example, if the constraint (i) from the list above causes a ‘signif-

icant’ reduction of C∞ (e.g. as constraint A1 does compared to constraint A2 on

Fig. 2.6), then we might want to ‘weaken’ this constraint if possible — e.g. by

using stronger leg swinging actuators or improving control algorithms to allow

more time to swing the leg.

2.5.2 Goals

As opposed to constraints which have to be met at each step, the goal (target)

region C0 represents a region at Poincaré section (at midstance) that we desire

to reach in one or more steps. The region C0 can be a single point (i.e. a unique

target state), several points, a connected region, or several disjoint regions at the

Poincaré section.

Pratt et al. assume the target to be all captured states (states in which the

35

biped can stand still — balanced, say, with ankle torques) [64, 42, 63]. Their

n-step viable-capture basins (described in Section 1.2 here) are essentially the n-

step controllable regions corresponding to their target. In this thesis we consider

a more general case and allow the target C0 to be any region we choose, which

lies entirely in the viability kernel V∞. Note, that if a target state is outside of

V∞, then reaching such state is always followed by a failure of the robot, either

immediately or after a finite number of steps. This can, however, be acceptable

for certain tasks, such as a goalkeeper in a soccer game saving the goal from a

shot, which is often followed by the goalkeeper falling down.

Examples of targets, which aim to serve different tasks of locomotion and

may be considered either in isolation or in combination, include:

(i) The hip (or the center of mass, CoM) is motionless and above the stance

foot (e.g. the stance leg achieves a vertical position). This would be a

special case of Pratt’s captured states and can be used to bring the robot to

a full stop.

(ii) The CoM is above the stance foot and has a specified speed, direction of

motion, or both. This goal represents a ‘stable’ motion of the robot with

a desired speed and/or a desired direction. Designing a controller which

tries to meet this goal at every midstance may be a way to stabilize a de-

sired motion of the robot.

(iii) A state along an optimal periodic trajectory — e.g. the state where the op-

timal trajectory crosses the Poincaré section of the model. The optimality

can be with respect to any desired characteristics of the motion, such as

energy use. As a special case of the example (ii) above, an optimal trajec-

tory could be stabilized by taking, at each step, the target to be a point on

36

the optimal trajectory. We use such approach in the design of our walk-

ing controller in Chapter 6, where we set the target to be a point along a

trajectory with low energy cost.

(iv) The projection of the CoM on the ground, or the stance foot, is in a specified

point or region on the ground. This goal aims to move the robot to a de-

sired location on the ground. A sequence of such goals (‘stepping stones’)

can be used to navigate the robot along a desired path or through a rough

terrain. A restricted area of stepping locations can also be used for obstacle

avoidance.

2.5.3 Control strategies

Thus far, we assumed no specific controller of the robot: we looked at the states

from which it is physically possible to avoid a failure or reach a desired target for

a given model, given actuator limitations and other imposed constraints. Now

we consider viability and controllability concepts for a particular control design.

Wieber notes in [92], that if a specific controller is used, then the biped avoids

a failure only from a controller-specific subset of the viability kernel V∞, and

calls this subset the invariant set of the given controller. For the states in V∞, but

outside of the invariant set, the robot fails, although a failure could be avoided

if a different controller was used. Similarly, for a specific controller and a given

target, the set of all states from which the robot reaches (or asymptotically ap-

proaches) the target is the basin of attraction of the dynamical system. This

basin of attraction is a subset of the∞-step controllable region C∞ of the model.

For the states which are in C∞, but outside of the basin of attraction, the robot

37

never reaches the target with the considered controller, but is able to do so if a

different feasible controller is employed.

Generally, we would like controllers to have possibly larger basins of attrac-

tion and invariant sets. For example, if the invariant set of a controller u1 is a

strict subset of the invariant set of a controller u2, then this suggests using the

controller u2 from the point of view of viability (with u2, the robot avoids a fail-

ure in some situations, where it fails if u1 is used). Note, however, that u1 may

still be preferable over u2 by a different criteria, e.g. energy use of the robot. The

most ‘superior’ controller (i.e. the controller with the biggest possible invariant

set or basin of attraction), thus, is the one whose invariant set fully fills up the

viability kernel (or the basin of attraction fully fills up the ∞-step controllable

region C∞). However, practical realization of such an ultimate controller may be

impractical due to computational complexity.

One way to design a controller, whose performance is close to that of the

ultimate controller, was suggested by Wieber [92, 93]. He proposed having sev-

eral controllers ui, such that their respective invariant sets, each a subset of V∞,

cover different parts of V∞ — that is, each ui is designed to work best in a dif-

ferent situation. Then imagine a high-level controller that switches between ui,

depending on the current state of the robot. The invariant set of this high-level

controller is the union of the invariant sets of all ui, and fills up most of V∞.

A disadvantage of this approach is the complexity of the design process, the

structure of the resulting controller, or both. Our goal is to design a controller,

whose basin of attraction for a given target is as close as reasonably possible to

the entire C∞, but which nevertheless maintains a simple structure and is not

computationally expensive. In Chapter 6 we design such controller for a multi-

38

degree-of-freedom robot.

2.5.4 Multi-DOF models

The controllability and viability concepts discussed in this thesis are defined for

a general model of a biped, no matter how many degrees of freedom (DOF) or

actuators the model has. However, for a complex model Vn and Cn are regions

in a many-dimensional state space. So, the viability and controllability analysis

may be too challenging, either computationally or analytically (for example,

see Section 2.7 for methods to numerically compute the regions Vn and Cn, and

related computational issues).

Whenever possible, we would like to avoid the computational burden of

complex models. One way to do this is by using a simple model, such as the IP

or LIP, to approximate the behavior of a given many-DOF robot. Encouraged by

private discussions with Anoop Grewal and Andy Ruina2 [29] we believe that,

during normal walking, the motion of the center of mass (CoM) of any biped

is ‘close’ to that of a point-mass model. Possible exceptions include extreme

situations, such as recovery when no stepping is allowed, or special types of

motion, e.g. tight rope walking. Therefore, one could design a high-level walk-

ing controller (i.e. the CoM motion controller), using a point-mass model as a

proxy for the robot. Following this approach, in Chapter 6 we use the planar

IP model (introduced in Section 2.4.1 and described in detail in Chapter 3) to

design a walking controller for the four-link, six-DOF robot. A more detailed

discussion on simple-model approximation of complex robots can be found in

Grewal’s work [29].
2 Biorobotics and Locomotion Lab, Cornell University.

39

2.6 Extended viable and controllable regions

The viable (Vn) and controllable (Cn) regions show the states, starting from

which the robot can avoid a failure or reach a specific goal, if appropriate feasi-

ble controls are used. However, these regions do not explicitly show which con-

trols allow the robot to accomplish the set goals. Here we extend the concepts

of viable and controllable regions to include controls available to the robot.

Suppose we are interested in feasible controls, which allow to not fail or to

reach a given target. These can be either full controls of the robot (i.e. control

laws for all actuators available on the robot) or only partial controls (i.e. for only

some actuators). For example, for the planar IP model we may be interested in

step sizes, which allow the robot to not fail with appropriate push-offs, but not

interested in the corresponding push-offs. We call the space of all controls of

interest the control space U. For simplicity, we will only consider controls during

the next step, i.e. before the robot reaches the next midstance or fails. Thus,

for the IP model, which has two control values per step (the step size xst and

push-off p), the control space U can be one- or two-dimensional. For any model

we assume the control space to be finite-dimensional — that is, the set of all

possible control actions in a single step can be described by a finite number of

parameters.

Next, consider the Cartesian product of the Poincaré section S and the con-

trol space U. We call this product the extended Poincaré section S̄ and any point

in S̄ an extended state of the robot. Each extended state is a pair (q, u) of the state

q ∈ S of the biped at midstance and the vector of controls u ∈ U.

Similar to the viable and controllable regions in the Poincaré section, we

40

define the extended viable and controllable regions as parts of the extended Poincaré

section.

2.6.1 Extended viable regions

For a given model, constraints, and control space U, an extended state q̄ = (q, u)

is 0-step viable, if the state q is 0-step viable (q ∈V0) and controls u are feasible

in the state q. The extended 0-step viable region V̄0 is the collection of all 0-step

viable extended states — it is all possible combinations of states allowed for the

robot at midstance (including those, for which the robot is about to fall) and all

controls allowed for the next step.

Next, we call an extended state q̄ = (q, u) n-step viable, if q ∈Vn and the robot

can start from q, use controls u ∈ U during the first step, and reach an (n− 1)-

step viable state at the end of the first step. The set of all n-step viable extended

states is the extended n-step viable region V̄n. It is all combinations of states q at

midstance and controls u, such that the biped can start from q, and take at least

n steps without failing and using controls u during the first step. The regions V̄n

are shown schematically on Fig. 2.7.

Similar to the viable regions Vn, the sequence of extended viable regions {V̄n}

is nested: V̄n ⊂ V̄n−1. We call the limit of this sequence the extended ∞-step viable

region, or the extended viability kernel, V̄∞. For any point (q, u) in V̄∞, the biped

can take infinitely many steps without failing, if it starts from the corresponding

state q at midstance and uses the corresponding control parameters u during the

first step. The extended viability kernel, thus, shows which controls can be used

at each step, so that the robot never fails.

41

Vn

V∞

V0

V0

Vn

V∞

state at
midstance (q)

controls for
the next step

(u)

all non-failed states
and feasible controls

all states and 1st -step controls,
which allow the robot to

never fail

all states and 1st -step
controls, which allow

the robot to take
n steps

all non-failed states

possible to never fail

possible to take n steps

Figure 2.7: Schematics of extended viable regions. Extended n-step viable regions V̄n
are areas in the space formed by both the state and control variables of the model. Only
states at midstance and controls of the next step are considered. V̄0 is all combinations
of non-failed states and feasible controls. The region V̄n includes all pairs of initial states
and corresponding controls of the next step, which allow the robot to take (at least) n
step without failing. For the combinations of states and corresponding controls in the
extended viability kernel V̄∞, the robot can step indefinitely. Note, the projections of the
extended n-step viable regions V̄n onto the state space are the n-step viable regions Vn
(see Fig. 2.1 and Section 2.1). The regions V̄n are extensions of the viable regions into the
control space of the model.

One may use V̄∞ to design a robust walking controller. For example, for each

state of the robot one may choose controls which are possibly farther from the

boundaries of V̄∞. Therefore, it is less likely for a disturbance to move the system

into a state outside of the viability kernel, where it would not be able to avoid

failing.

We will also sometimes use the notion of viable controls. We say that for a

given state q at midstance controls u ∈ U are n-step viable, if the corresponding

42

extended state (q, u) is n-step viable (here n can be zero, a positive integer, or

infinity).

2.6.2 Strict extended controllable regions

Before proceeding to define the extended controllable regions, we first intro-

duce the strict extended controllable regions ˆ̄Cn. We only use the regions ˆ̄Cn to

define the extended controllable regions in Section 2.6.3 below and to numer-

ically compute the extended viable and controllable regions in Sections 2.7.3

and 2.7.4.

For a given model, control space U, and a given target region C0, we say that

an extended state q̄ = (q, u) is strict n-step controllable (for n≥ 1), if the state q is

strict n-step controllable (q ∈ Ĉn) and the robot can start from q, use controls u ∈ U

during the first step, and reach a strict (n− 1)-step controllable state (i.e. reach

the region Ĉn−1) at the next midstance. The set of all strict n-step controllable

extended states is the strict extended n-step controllable region ˆ̄Cn. For any point

(q, u) in ˆ̄Cn, if the robot is initially in the state q and controls u are used during

the first step, then the robot is able to reach the target C0 taking exactly n steps.

A set-valued map ˆ̄C, which we call the strict extended controllability map (or

simply the extended controllability map), describes the regions ˆ̄Cn:

ˆ̄C : 2V0 → 2V̄0 , s.t. ˆ̄C(C0) = ˆ̄C1.
3 (2.11)

For any target region C0, the map ˆ̄C returns the corresponding strict extended

1-step controllable region ˆ̄C1. Consequently, the region ˆ̄Cn is expressed as all

3 2X is the power set of a given region X, i.e. the set of all subsets of X.

43

initial states and first-step controls, for which the region Ĉn−1 in the state space

can be reached in one step:

ˆ̄Cn = ˆ̄C(Ĉn−1), for n ≥ 1, (2.12)

where we assume Ĉ0 = C0. The limit of the sequence { ˆ̄Cn} is the strict extended

∞-step controllable region ˆ̄C∞. It is all extended states (q, u) which allow the robot

to asymptotically reach the target region C0.

2.6.3 Extended controllable regions

We now define the extended controllable regions C̄n for a given model of the

robot, target region C0 and control space U. Similar to the extended viable re-

gions, the regions C̄n extend the concept of the controllable regions Cn into the

control space of the robot.

First, we say that the extended 1-step controllable region C̄1 is equivalent to the

strict extended 1-step controllable region ˆ̄C1 defined in Section 2.6.2 above. It is

all combinations of states at midstance and controls of the first step, for which

the robot is able to reach a target state in C0 at the end of the first step and not

fail. Thus, from equation (2.11),

C̄1 = ˆ̄C1 = ˆ̄C(C0). (2.13)

Any point (q, u) in the region C̄1 is a 1-step controllable extended state of the robot.

Next, for n≥ 2, we call an extended state (q, u) of the robot n-step controllable, if

there is a way for the robot to reach the target C0 in n or fewer steps, starting from

the state q at midstance and using the controls u ∈ U during the first step. The

44

extended n-step controllable region C̄n is the set of all n-step controllable extended

states of the robot. The extended regions C̄n are shown schematically on Fig. 2.8.

Another way to describe C̄n is all extended states, for which the (n− 1)-step

controllable region can be reached in one step — that is, C̄n is the strict extended

1-step controllable region corresponding to the target Cn−1:

C̄n = ˆ̄C(Cn−1). (2.14)

See Appendix B on page 177 for a formal proof of equation (2.14). Formula (2.14)

is useful for iterative numerical computation of the regions C̄n, as explained in

Section 2.7.4.

The sequence {C̄n} of the extended controllable regions is nested: C̄n−1 ⊂ C̄n.

We call the limit of this sequence the extended ∞-step controllable region C̄∞. It

represents all extended states (q, u), such that if the robot starts in q and uses

controls u during the first step, it is able to reach the target eventually or ap-

proach it asymptotically. Alternatively, C̄∞ is also all extended states (q, u), such

that the state q is in C∞, and if the robot starts from q and uses controls u during

the first step, then the state of the robot at the end of the first step is again in C∞.

Hence, the invariance property of the region C̄∞.

Both the controllable regions Cn and the extended controllable regions C̄n

show whether it is possible for the robot to return to the target after a distur-

bance. The regions C̄n also show all feasible controls which can be used to return

to the target, when it is possible to do so. In Chapter 6 we employ the extended

controllable regions to design a walking controller. For each state of the robot

we consider all corresponding controls inside C̄∞ and choose those, which are

optimal in a certain way (e.g. with respect to stability, robustness, or efficiency).

45

C∞

V0

V0

C∞

state at
midstance (q)

controls for
the next step

(u)

all non-failed states
and feasible controls

all states and 1st -step controls,
which allow the robot to

reach target

all non-failed states

possible to reach
 target in n steps

possible to reach target

all target states, C0

Cn

Cn

all states and 1st -step
controls, which allow

the robot to reach target
in n steps

Figure 2.8: Schematics of extended controllable regions. Extended n-step controllable
regions are areas in the space formed by both the state and control variables of the
model. Only states at midstance and controls of the next step are considered. For a
given set of target states C0, the extended n-step controllable region C̄n (n≥ 1) is all
combinations of states and corresponding controls, such that the robot can reach a target
state in n or fewer steps. The region C̄∞, the limit of the sequence of nested regions {C̄n},
represents all combinations of states and next-step controls, which allow to eventually
reach the target or approach it asymptotically. Projections of the extended controllable
regions C̄n onto the state space of the model are the controllable regions Cn (see Fig. 2.2
and Section 2.2).

We may sometimes use detailed notation of the extended viable and con-

trollable regions, to explicitly show which control parameters of the model are

considered in the control space U. For example, if for the planar IP model we

are only interested in the step sizes xst, then we denote the corresponding n-

step viable and controllable regions by V̄ xst
n and C̄xst

n . However, if both the step

size xst and push-off p form the control space U, then we write V̄ p,xst
n and C̄p,xst

n

respectively.

46

2.6.4 Parameter extension

In the Sections 2.6.1 and 2.6.3 above, we have extended the state space of the

robot by one or more control axes in order to find controls, which are ‘good’ for

the model in a given state. One may also consider extending the state space by

dimensions of other (non-control) parameters of the model or the environment,

such as the ground slope, inertia of the legs, gravity, etc. Application of the

viability and controllability concepts to this new space (in a way, analogous to

the extended viable regions in Section 2.6.1 and extended controllable regions in

Section 2.6.3) may help understanding the role of the corresponding parameters

in the model. For example, consider an extended state of the model (q, γ), where

q is the state of the robot at midstance and γ the ground slope. Construction

of the corresponding extended viable V̄γ
n and controllable C̄γ

n regions can show

which slope angles are fatal for the robot (i.e. outside of the extended viability

kernel — no feasible control can prevent the robot from failure in one or more

steps) and for which slope angles a given target can be reached (e.g. on which

slopes the robot is able to maintain a desired velocity).

2.6.5 Relation to capture regions

The controllable and extended-controllable regions generalize Pratt’s [64, 42]

viable-capture basins and capture regions, respectively (see Section 1.2). The

n-step viable-capture basin is the set of all states of the robot from which the robot

can come to a stop by taking n or fewer steps. Thus, for a given model, Pratt’s

n-step viable-capture basin is equivalent to our n-step controllable region Cn,

when our goal is standing still.

47

For a given initial state of the robot, the n-step capture region includes all

points on the ground where, for the present step, the robot can step and come

to a stop within at most n− 1 subsequent steps (i.e. within n steps total). Co-

ordinates of the next stepping location (two values for 3D robots, one value for

2D robots) are high-level control parameters of the model. For example, in our

planar IP and LIP models, such a control parameter is defined as the length of

the first step xst. So, for a given initial state q0, the n-step capture region repre-

sents all controls (first footsteps) which allow the robot to stop within n steps

in total. On the other hand, consider the extended n-step controllable region

C̄n, extended by inclusion of the footstep control and corresponding to the goal

of standing still. C̄n is all combinations of initial states and first-step controls

which allow the robot to stop within n steps. Therefore, the n-step capture re-

gion is equivalent to the slice of the extended n-step controllable region along a

specific initial state q0.

Thus, our concept of extended controllable regions generalizes Pratt’s cap-

ture regions in three different ways. First, controllable regions allow us to con-

sider an arbitrary goal (target region in state space) of locomotion — as opposed

to only the goal of standing still in capture regions. Second, extended control-

lable regions study all control parameters of interest of the model — as opposed

to only footstep controls in capture regions. For example, in Chapter 3 we find

both step-size and push-off controls of the planar IP model for various targets.

Third, extended controllable regions show both initial states and corresponding

controls that let the robot reach the target — as opposed to the assumption of a

specific initial state in capture regions.

That is, capture regions consider controls from a particular subset of all con-

48

trol variables, to reach a specific target from a specific initial state. We gener-

alize to consider all initial states, all possible targets, and all control variables.

This difference reflects a slight difference in philosophy. While Pratt’s goal is

for practical on-the-fly model-predictive control, ours is understanding limits

of control robustness.

2.7 Methods

We now describe methods we use to numerically compute the viable and con-

trollable regions Vn and Cn, and the extended viable and controllable regions

V̄n and C̄n. In principal, the computational procedures presented below can be

applied to any well-specified model of a biped. For all calculations below we

use discretization of the state space. The computational requirements can be

challenging even for simple models. Analytical and/or other insights are used,

whenever possible, to reduce the computational work.

2.7.1 Controllable regions

We first describe how we compute the controllable regions Cn for a given model,

constraints, and the target region C0.

Assume that we have a way of computing the 1-step controllable region C(q)

corresponding to an arbitrary target point q in the state space. For some simple

models, such as the planar IP and (2D or 3D) LIP models, this computation can

be done analytically (see Sections 3.2.2 and 4.2.1). For more complex models, we

develop a numerical procedure, which utilizes a massive brute-force simulation

49

(together with analytical and intuitive insights, whenever possible). This pro-

cedure approximately finds all initial states from which the robot can reach the

state q within one step. See Section 3.2.5 for the description of such procedure

for the planar IP model, constrained by a minimum time required to place the

swing leg into a desired position.

The target region C0 is a set of target points q. Obviously, then, the 1-step

controllable region C1, corresponding to the target C0, is already found if there

is only a single target state in C0 (i.e. if C0 = {q}). If there is more than one

point q in C0, then the region C1 can be found by taking the union of all 1-step

controllable regions corresponding to different individual target states in C0:

C1 = C(C0) =
⋃
q∈C0

C(q). (2.15)

The union in the right-hand side of the above equation (as well as equations

(2.17) and (2.19) below) can be calculated numerically, by discretizing the state

space of the model. One example of such calculation can be found in Sec-

tion 3.2.3 for the planar IP model.

Next, we proceed to find the n-step controllable regions Cn for n> 1. Recall

from Section 2.2, that the region Cn can be expressed as the 1-step controllable

region corresponding to the target Cn−1. That is, repeating equation (2.2),

Cn = C(Cn−1). (2.16)

Similar to equation (2.15), the right-hand side of equation (2.16) above can be

written as the union of all 1-step controllable regions, corresponding to individ-

ual states in Cn−1:

Cn = C(Cn−1) =
⋃

q∈Cn−1

C(q), for n ≥ 1. (2.17)

50

Cn-2

Cn-1 = Cn-2 U (Cn-1\Cn-2)

Cn-1\Cn-2

Two-subset representation of region Cn-1

possible to reach
target in (n-2) or

fewer steps

(n-1) steps
required to reach

target

possible to reach target
in (n-1) or fewer steps

bo
un

da
ry

 o
f Cn-1

Figure 2.9: Representation of Cn−1 as two subsets. This figure illustrates equation
(2.18) in the text, an intermediate step in the procedure of computing the n-step control-
lable regions Cn for a given target C0. The region Cn−1 (all initial states which allow to
reach the target in n− 1 or fewer steps) is split into two subsets: the (n− 2)-step control-
lable region Cn−2 (possible to reach the target in n− 2 or fewer steps) and all other points
in Cn−1 (i.e. the region Cn−1 \Cn−2 — n− 1 steps are required to reach the target).

Thus, according to the above formula, the n-step controllable region Cn for a

given target C0 can be found, based on the (n− 1)-step controllable region Cn−1

corresponding to the same target and the knowledge of (or the ability to com-

pute) the 1-step controllable region C(q) for an arbitrary target state q. Note, that

for n = 1, equation (2.17) above agrees with expression (2.15) for computing the

1-step controllable region C1.

The amount of computation in a single step of (2.17) (that is, evaluation of

C(Cn−1) once) can be reduced with the following observation. Recall from Sec-

tion 2.2, that the controllable regions are nested, and Cn−2 ⊂ Cn−1. Let us break

the region Cn−1 into two subsets, as shown on Fig. 2.9: the (n− 2)-step control-

lable region Cn−2 and the rest of Cn−1:

Cn−1 = Cn−2 ∪ (Cn−1 \Cn−2). (2.18)

51

We then can write

C(Cn−1) = C (Cn−2 ∪ (Cn−1 \Cn−2)) =

= C(Cn−2) ∪ C(Cn−1 \Cn−2).

The controllable region C(Cn−1 \ Cn−2) in the right-hand side above can be ex-

pressed as the union of all 1-step controllable regions C(q) corresponding to

individual target states q in Cn−1 \Cn−2:

C(Cn−1) = C(Cn−2) ∪

 ⋃
q∈Cn−1\Cn−2

C(q)

 .
Also notice, that the term C(Cn−2) above is exactly the (n− 1)-step controllable

region Cn−1, according to (2.17). Therefore, equation (2.17) becomes

Cn = Cn−1 ∪

 ⋃
q∈Cn−1\Cn−2

C(q)

 , for n ≥ 2. (2.19)

Formula (2.19) provides a way to iteratively compute the n-step controllable re-

gions Cn = Cn(C0) for a given target C0. At each iteration, a new set of points is

added to the previously found region Cn−1 in order to get Cn. This new set is the

1-step controllable region, corresponding to the difference Cn−1 \ Cn−2 between

the regions Cn−1 and Cn−2. Compared to (2.17), equation (2.19) is more compu-

tationally efficient, because it only computes new points in Cn — as opposed to

computation of the entire Cn at each iteration of (2.17). Iteration step (2.19) is

schematically illustrated on Fig. 2.10.

We do not have a universal method to find the∞-step controllable region C∞

accurately. However, we suggest the following way of approximating C∞. The

n-step controllable regions Cn approach the region C∞ when n goes to infinity.

Assuming C∞ is bounded, the difference Cn \Cn−1 between two subsequent con-

trollable regions decreases, as n increases. We then hypothesize that for most

52

Cn-2

states in Cn-1 used
as targets to �nd Cn

q1

q2q3

qi

boundary
of Cn-1

st
at

e
 sp

ac
e

example target states

Cn-1

q1

q2q3

qi

possible to reach state qk in 1 step

(q2)(q3)
(q1)

(qi)

st
at

e
 sp

ac
e

boundary
of Cn

One iteration of computing n-step controllable regions Cn

1. Choose appropriate states in Cn-1
 and use them as targets

2. Combine all corresponding 1-step
 controllable regions with Cn-1 to �nd Cn

Figure 2.10: Illustration of the Cn computation procedure. The figure schematically
illustrates one iteration step of the procedure we use to compute the n-step controllable
regions Cn for a given target C0. At each iteration, the region Cn is computed based on
the previously found regions Cn−1 and Cn−2. First, select all states in Cn−1, which are
outside of Cn−2. For each selected state qi find the corresponding 1-step controllable
region C(qi), i.e. all states at midstance, from which the robot can reach the state qi by
making at most one step. Then, take the union of all such regions C(qi) and the region
Cn−1. The result is the n-step controllable region Cn.

robots, it is sufficient to find only several regions Cn in order to approximate

the ∞-step controllable region C∞. For example, one could use the region C5 as

an approximation of C∞, if there is ‘small’ difference between C5 and C4. No-

tice also, that if the difference Cn \ Cn−1 decreases with each n, then so does the

amount of computational work required to find each Cn, according to (2.19).

On the other hand, for certain models (e.g. for which C∞ is unbounded)

the evolution of the n-step controllable regions may provide one with ‘intuition’

about the region C∞, which can then be used to ‘guess’ the shape of C∞. One

example of such model is the simple LIP model, discussed in Chapter 4, which

53

can recover from any infinitely large velocity, assuming the actuators can swing

the swing leg infinitely fast.

We now summarize the iterative procedure of computing the n-step control-

lable regions Cn = Cn(C0) for a given model, constraints, and the target region

C0:

(I). Develop a way to compute the controllability map C(q) for an arbitrary

target state q. This can be done either analytically (e.g. by defining ana-

lytical equations of the boundaries of C(q)), or numerically (say, by devel-

oping a numerical procedure, which approximates C(q) for a given input

q).

(II). Using results of the step (I), compute the 1-step controllable region C1

corresponding to the given target C0. If there is more than one target

state in C0, equation (2.15) should be employed.

(III). Iteratively compute as many of the n-step controllable regions Cn as de-

sired, for n = 2, 3, At each iteration, the region Cn is found according

to formula (2.19), using the knowledge of the two previous regions, Cn−1

and Cn−2, as well as the results of the step (I). This iteration step is illus-

trated on Fig. 2.10.

(IV). If, after several iterations in the step (III), each next region Cn does not

significantly differ from the previous region Cn−1, use the last computed

region Cn as an approximation of the ∞-step controllable region C∞ =

C∞(C0). If, however, the regions Cn do not seem to approach any specific

area, use the knowledge about the evolution of the regions Cn to increase

your intuition about the region C∞.

54

The above algorithm allows us to find the controllable regions Cn for a given

target C0. However, if one also wishes to compute the extended controllable re-

gions C̄n, the algorithm described in Section 2.7.4 should be used instead, which

allows us to compute both the controllable and extended controllable regions

Cn and C̄n.

2.7.2 Viable regions

We now describe an iterative procedure to compute the n-step viable regions Vn

for a given robot. The procedure is similar to the one we used to find the n-step

controllable regions Cn in Section 2.7.1. We assume that the 0-step viable region

V0 — all states allowed for the robot at midstance — is either given or can be

found based on the given set of constraints.

Recall from Section 2.1, that the region Vn can be described as all states at

midstance, starting from which the robot is able, with appropriate feasible con-

trols, to take exactly one step and reach a state in the region Vn−1. It is conve-

nient then to use the concept of the strict controllable regions, described in Sec-

tion 2.2.1: Vn is the strict 1-step controllable region corresponding to the target

Vn−1:4

Vn = Ĉ(Vn−1) =
⋃

q∈Vn−1

Ĉ(q), for n ≥ 1. (2.20)

Similar to equation (2.15) on page 50 for the 1-step controllable region C(C0), we

represented here the strict 1-step controllable region Ĉ(Vn−1) as the union of all

4 In contrast to equation (2.16) for the controllable regions, the n-step viable region Vn is
generally not equal to the (‘non-strict’) 1-step controllable region C(Vn−1) for the target Vn−1.
This is because any controllable region includes all target states, i.e. Vn−1 ⊂ C(Vn−1). On the other
hand, the viable regions form a shrinking nested sequence, and Vn ⊂ Vn−1. That is, Vn generally
does not include the entire region Vn−1 and, thus, cannot be equal to C(Vn−1). Hence, the strict
controllable regions are used here, instead of the controllable regions.

55

strict 1-step controllable regions Ĉ(q) corresponding to individual target states q

in Vn−1.

Equation (2.20) provides a way to sequentially calculate the n-step viable

regions Vn, starting from V1. At each step, the region Vn is found based on the

previously computed region Vn−1. Here we assume, that we have a way to find,

either analytically or numerically, the strict 1-step controllable region Ĉ(q) for an

arbitrary target state q. Similar to the step (IV) of finding the∞-step controllable

region C∞ (page 54), the ∞-step viable region V∞ can be approximated by one

of the regions Vn for large n, when Vn converge to a fixed area in the state space.

Other analytical and numerical insights can be used to find the viability kernel

V∞ — e.g. see Section 3.2.4 on page 84 where we find the viable regions of the

planar IP model of a biped.

The iterative procedure (2.20) is computationally expensive. In order to find

V1 one has to compute the strict 1-step controllable region for every single state

in V0, i.e. every state allowed for the robot at midstance. Note, that these states

also include all 1-step viable states, because V1 ⊂V0. Therefore, all calculations

which are necessary to find the region V2, are already done at the previous it-

eration, during the computation of V1 — hence, these calculations are repeated.

In fact, the property of the viable regions to form a nested shrinking sequence

(Vn ⊂Vn−1) yields that all calculations performed at any single iteration (i.e. com-

putation of Vn) repeat a part of the calculations performed at the previous itera-

tion (i.e. computation of Vn−1).

This computational inefficiency may be partially overcome by storing, for

every state q ∈ V0, the corresponding region Ĉ(q), which is computed during the

first iteration, when V1 is found. The information about all regions Ĉ(q) can then

56

be reused to find every viable region Vn. The amount of computation in this case

is replaced by significant memory demands.

Note, that formula (2.20) allows us to find only the viable regions Vn. How-

ever, if one also wishes to compute the extended viable regions V̄n, the algorithm

described in Section 2.7.3 should be used instead, which allows to compute both

the viable and extended viable regions Vn and V̄n.

2.7.3 Extended viable regions

The extended viable and controllable regions V̄n and C̄n for a specific model can

be computed by iterative procedures, analogous to those we used to find the

controllable regions in Section 2.7.1 and the viable regions in Section 2.7.2.

As discussed in Section 2.6.1, the extended n-step viable region V̄n for n≥ 1

is all combinations (q, u) of initial states q and controls u ∈U of the first step, for

which the robot can reach a state in Vn−1 at the end of the first step. Therefore,

similar to equation (2.20) for the viable regions, the extended region V̄n is the

strict extended 1-step controllable region corresponding to the target Vn−1:

V̄n = ˆ̄C(Vn−1) =
⋃

q∈Vn−1

ˆ̄C(q), for n ≥ 1. (2.21)

The (strict) extended controllability map ˆ̄C(·) is defined by (2.11) on page 43.

Note, that formula (2.21) above requires the knowledge of the (n− 1)-step viable

region Vn−1. For each n, we find the region Vn as the projection of the correspond-

ing extended region V̄n onto the Poincaré section S :

Vn = pro j
S

V̄n. (2.22)

57

That is, for each extended state (q, u) in V̄n, we include the corresponding state q

into the viable region Vn.

Equations (2.21) and (2.22) together define a procedure to sequentially com-

pute both the viable and extended viable regions Vn and V̄n. Each iteration of

the procedure consists of two steps:

(I). Compute the extended viable region V̄n according to (2.21), using the

viable region Vn−1 found at the previous iteration.

(II). Find the viable region Vn as the projection (2.22) of the just computed

extended region V̄n onto the state space of the robot.

We assume that the extended 0-step viable region V̄0 — all combinations of

states of the robot allowed at midstance and corresponding controls allowed

during the first step — is given or can be found either analytically or numeri-

cally, based on the given model, constraints, and feasible controls. The extended

viability kernel V̄∞, the limit of the regions V̄n, can be approximated by the ex-

tended n-step viable region V̄n for a sufficiently large n.

Note, however, that formula (2.21) for finding the regions V̄n is computa-

tionally expensive, similarly to equation (2.20) for computing only the viable

regions Vn. See Section 2.7.2 on page 56 for more details on the issue.

2.7.4 Extended controllable regions

The extended n-step controllable regions C̄n can be found similarly to the com-

putation procedure for the controllable regions Cn described in Section 2.7.1.

58

Equation (2.14) equals the region C̄n to the strict extended 1-step controllable

region ˆ̄C(Cn−1). We represent ˆ̄C(Cn−1) as the union of all strict extended regions

ˆ̄C(q) corresponding to different target states q in Cn−1:

C̄n = ˆ̄C(Cn−1) =
⋃

q∈Cn−1

ˆ̄C(q), for n ≥ 1. (2.23)

The amount of computational work in the right-hand side of the above equa-

tion can be significantly reduced. For this purpose, notice that equation (2.23) is

almost the same as equation (2.17) for the controllable regions Cn. The only dif-

ference is the extended map ˆ̄C used in (2.23) compared to the map C in (2.17). We

then follow the steps on page 50 that we used to transform equation (2.17) into

the low-computer-work formula (2.19) for the controllable regions, to transform

the formula (2.23) above into

C̄n = C̄n−1 ∪

 ⋃
q∈Cn−1\Cn−2

ˆ̄C(q)

 , for n ≥ 2. (2.24)

Equation (2.24) above is more computationally efficient than (2.23), because it

requires computation of the map ˆ̄C(q) only for some states q in Cn−1 (i.e. only

those in Cn−1 \Cn−2), as opposed to the entire Cn−1 in (2.23).

Note, that two controllable regions Cn−1 and Cn−2 are used in (2.24) to com-

pute the extended region C̄n. In order to avoid calculation of the controllable

regions by a separate procedure, we express the region Cn as the projection of

the corresponding extended region C̄n onto the Poincaré section S of the model:

Cn = pro j
S

C̄n. (2.25)

That is, we simply ‘drop’ the controls u from each point (q, u) in C̄n to get Cn.

Equations (2.24) and (2.25) together provide a method to sequentially find

both the controllable and extended controllable regions Cn and C̄n, starting from

59

n = 2. At each step the regions Cn and C̄n are found based on the previously

calculated C̄n−1, Cn−1 and Cn−2. Expression (2.23) can be used to find the 1-step

region C̄1 and, hence, the region C1 according to (2.25). Here we assume that

we have a way, either analytical or numerical, to compute the extended con-

trollability map ˆ̄C(q) for an arbitrary state q at midstance. One example of such

computation for the 2D IP model can be found in Section 3.2.2.

The extended ∞-step controllable region C̄∞, the limit of the extended re-

gions C̄n, can be approximated by the region C̄n for a sufficiently large n, assum-

ing C̄∞ is bounded. When the region C̄∞ is unbounded, it might be possible to

guess its shape, based on the evolution of the regions C̄n — for example, we

make such guess for the planar LIP model in Section 4.2, supporting it with our

intuition and analytical insights about the model.

We summarize the C̄n computation procedure for a given target region C0 as

follows:

(I). Develop a way to compute the extended controllability map ˆ̄C(q) for an

arbitrary target state q. This can be done either analytically (e.g. by pro-

viding analytical formulas for the boundaries of ˆ̄C(q)), or numerically

(e.g. by developing a numerical procedure, which approximates ˆ̄C(q) for

a given input q).

(II). Compute the extended 1-step controllable region C̄1 corresponding to

the given target C0, using equation (2.23). Use C̄1 to find the controllable

region C1 according to (2.25).

(III). Iteratively compute as many of the extended n-step controllable regions

C̄n as desired, for n = 2, 3, and so on. At each iteration, the region C̄n is

found according to (2.24), using the regions C̄n−1, Cn−1 and Cn−2 found at

60

the previous iterations. Then use C̄n to find the controllable region Cn as

in (2.25).

(IV). If, after several iterations of the step (III), each next region C̄n is ‘close’ to

the previous region C̄n−1, use the last computed C̄n as an approximation

of the extended∞-step controllable region C̄∞. Then find the controllable

region C∞ according to (2.25). If, however, the regions C̄n do not seem to

approach a fixed bounded area, use the knowledge about the evolution

of the regions C̄n to increase your intuition about C̄∞.

2.7.5 Constraints

Suppose one or more additional constraints are imposed on a given model. In

this case, the viable and controllable regions (hence, the extended viable and

controllable regions too) may reduce in size and change in shape — see Sec-

tion 2.5.1 for more details and examples of constraints. Hence, all regions have

to be recomputed for the constrained model.

Consider the n-step controllable regions Cn, which we compute by the iter-

ative procedure, described on page 54 and represented by equation (2.19). No-

tice, that any information about the model is only used to find the 1-step con-

trollable region C(q) for an arbitrary target state q (i.e. only in the step (I) of the

procedure). Computation of all regions Cn relies on the knowledge of C(q) for

any given q. The map C(·), thus, is a crucial element of the controllable regions

concept, as it contains all information about all regions Cn. Therefore, after the

introduction of the new constraints to the model (or any other changes to the

model of the robot or environment), only calculation of C(q) has to be revisited.

61

This property of the method is useful for its implementation on a computer.

The same property is valid for the methods of finding the viable, extended

viable, and extended controllable regions for a robot. After any changes in the

model, only the calculation of the (strict) (extended) 1-step controllable region

for an arbitrary target state has to be corrected in order to recompute all regions

Vn, V̄n, and C̄n.

62

CHAPTER 3

INVERTED PENDULUM MODEL IN 2D

One of the simplest possible models of bipedal locomotion is the Inverted Pen-

dulum (IP) model in 2D [43, 36, 84, 10], introduced in Section 2.4.1. The model

is depicted on Fig. 2.5a on page 29. The system has one dynamic variable (the

stance leg angle θ) and two phase variables (angle θ and angular velocity θ̇).

There are two control parameters per each step: the step length xst, which deter-

mines the next stepping location and time, and the push-off impulse p, applied

along the stance leg just before the collision instant. It is assumed that the swing

leg can be instantaneously moved to any desired position without influencing

dynamics of the stance leg. The effects of ankle torques (except for at push-off)

and hip torques (reacting against an upper body that our model does not have)

are neglected. We consider only walking motions of the robot.

In this Chapter we derive the dynamics and walking constraints of the pla-

nar IP model (Section 3.1). We compute the viable and controllable regions Vn

and Cn, and the extended viable and controllable regions V̄n and C̄n for the model

(Section 3.2). Both the unconstrained model and the model with limited actua-

tion are considered. The controllable regions for a range of different targets were

found by Wolfslag [96] and also discussed in [10]. Based on our calculations, we

justify for the 2D IP model the ‘Viable is Controllable’ and the ‘Two-step con-

trollability’ claims made in Section 2.3 on page 25.

63

3.1 Equations of motion

There are formally two phases of the motion of the robot: the single stance

phase, when exactly one leg is in contact with the ground, and instantaneous

collision, which occurs when the swing leg hits the ground. During the single

stance motion, we assume that the stance foot is a revolute joint and the robot

acts as a simple inverted pendulum. This is described by the following equation

in non-dimensional form:

θ̈ = sin θ. (3.1)

The non-dimensionalization is done using the constants m, l and
√

l/g for mass,

length, and time correspondingly, where m is the mass of the robot (i.e. of the

hip), l the leg length, and g the acceleration due to gravity. Note, that such non-

dimensionalization is effectively equivalent to setting the values of m, l, and g

equal to 1.

A collision occurs when the swing leg hits the ground, i.e. when the height

of the swing foot above the ground becomes zero:

ysw = cos θ − cos θsw = 0. (3.2)

Here θsw is the angle of the swing leg relative to the vertical at the instant of

collision. Note, that the swing leg angle is only important at heel-strike, because

the motion of the massless swing leg does not influence the dynamics of the

stance leg. We assume that at heel-strike, e.g. as on Fig. 3.1, the stance leg angle

θ is positive, while the swing leg angle θsw is negative. Angle θsw is related to the

step size xst by

xst = −2 sin θsw. (3.3)

We assume that the swing leg controller successfully achieves the step size xst

64

y

x

θ

xst

p

O

colliding
swing leg

point of collision

v -

v +

vp

pgr

push-o� p

ground impact pgr

θsw

stance
leg

G

1. velocity before collision

2. velocity after push-o�

3. velocity after collision

Figure 3.1: Collision in the planar IP model. Throughout the collision the configura-
tion of the robot stays the same, but velocities are discontinuous. Two impulses produce
jumps in the velocities: the push-off impulse p along the stance leg and the ground reac-
tion impulse pgr along the swing leg. First, the push-off is applied just before the instant
of collision, instantaneously changing the hip velocity in the stance leg direction, from
~v− to ~vp. The amount of push-off is chosen by the controller. Next, the ground reaction
impact pgr hits along the swing leg, so that after the impact the hip moves perpendic-
ular to the swing leg. The hip velocity jumps from ~vp to ~v+. After the collision the legs
change their roles: the stance leg becomes the new swing leg and vice versa.

specified by the balance controller at each midstance, thus determining the an-

gle θsw at the next collision.

When condition (3.2) is met, a collision happens. We use the superscript − for

the values just before the instant of collision, and the superscript + for the values

just after the collision. Throughout the collision, the configuration of the robot

remains the same, but the legs swap their roles: the (former) stance leg becomes

the (new) swing leg, and vice versa. Therefore, the leg angles swap too:

θ+ = θsw = −θ−. (3.4)

Velocities of the system are discontinuous across the collision. Two impulses

affect velocity ~v of the hip, as illustrated on Fig. 3.1: the push-off impulse p and

65

the ground reaction impulse pgr. First, the push-off impulse is applied along the

stance leg, producing a jump in the hip velocity in the direction of the stance

leg. The velocity ~vp after the push-off becomes

~vp = ~v− + p~rst, (3.5a)

where ~rst is the unit vector along the stance leg, i.e. the vector from the stance

foot to the hip. After the push-off, the swing leg collides with the ground, caus-

ing a ground reaction impulse pgr along the swing leg — hence, the second jump

in the hip velocity. We assume that after the collision the velocity of the swing

foot is zero and the hip moves perpendicular to the swing leg. We use conserva-

tion of angular momentum about the point of collision to find the hip velocity

~v+ after the collision:

~rsw × ~vp = ~rsw × ~v+. (3.5b)

Here ~rsw is the (unit) vector from the swing foot to the hip. Note, the impulse

pgr from the ground is such, that the new hip velocity ~v+ has no component in

the direction of the swing leg, as shown on Fig. 3.1. Therefore, pgr is equal in

magnitude and opposite in sign to the component of the hip velocity ~vp along

the swing leg direction:

pgr = −~vp · ~rsw. (3.6)

Equations (3.5a) and (3.5b) together express the change in the CoM velocity

during the heel-strike, from ~v− to ~v+. In order to find the angle rate θ̇+ after the

heel-strike, we use the coordinate form of equations (3.5). The vectors ~rst and ~rsw

along the stance and swing leg are

~rst =

sin θ−

cos θ−

 , ~rsw =

sin θ+

cos θ+

 . (3.7a)

66

Therefore, velocities ~v− and ~v+ can be written as

~v− =
d
dt
~rst =

 θ̇
− cos θ−

−θ̇− sin θ−

 , ~v+ =
d
dt
~rsw =

 θ̇
+ cos θ+

−θ̇+ sin θ+

 . (3.7b)

Plugging expressions (3.7) above into two equations (3.5), we solve for θ̇+ to get

θ̇+ = θ̇− cos 2θsw − p sin 2θsw. (3.8)

Equations (3.4) and (3.8) represent the collision law for the 2D IP model,

defining the state of the robot after the heel-strike. Between heel-strikes, the

robot acts as an inverted pendulum, according to the differential equation (3.1).

Kuo [43] and Ruina, et. al. [69] study in more detail the collisions and energetics

of collisions of the planar IP model. These studies suggest that the preemptive

push-off is an efficient way to compensate for the collisional losses.

Note, that the push-off impulse instantaneously changes the velocity of the

hip and, hence, the velocity of the swing foot. As a result, the swing foot might

not collide with the ground right after the push-off. In order to ensure the col-

lision (and the desired stepping location), the swing leg controller may have to

instantaneously change the angular rate of the swing leg. In part, this supports

the strategy of the swing leg retraction prior to the instant of collision. More

insights about the importance of the leg retraction in legged locomotion can be

found in Hasaneini’s work [32].

3.1.1 Limits of walking

We only study walking motions of the robot, in which exactly one foot is on the

ground at each time. Any behavior that leads to the flight phase, or is otherwise

67

not physically realizable, has to be avoided and, if it occurs, is considered a fail-

ure. We consider possible ways for the system to fail and find the corresponding

constraints (i.e. inequalities), which have to be satisfied to avoid the failure.

Negative leg tension. During the single stance motion, the ground reaction

force along the stance leg counteracts gravity and keeps the hip moving along

a circular trajectory. The reaction force can only be directed upwards, because

suction of the leg from the ground is not physically realistic. When the tension

is about to turn negative, the stance foot lifts off and the flight phase begins

(assuming no problems of the type discussed in [52]). Therefore, we require

that the tension in the stance leg is always non-negative:

Fst = cos(θ) − θ̇2 ≥ 0. (3.9a)

Flight after push-off. Consider the ground reaction impulse pgr which hits

along the swing leg at the instant of heel-strike. Similar to the stance leg tension,

the impulse pgr is not allowed to be negative, i.e. the ground cannot pull on the

swing leg. According to expression (3.6) for the ground reaction impulse, we

write this constraint as

~vp · ~rsw ≤ 0.

That is, the hip velocity ~vp after the push-off has to have a negative (i.e. down-

ward) component along the swing leg direction ~rsw (e.g., such as on Fig. 3.1). On

the other hand, if ~vp has an upward component along the swing leg (say, after

a too strong push-off), the ground impact does not occur and the robot tran-

sits into the flight phase. We use equations (3.5a) and (3.7) to write the above

inequality as

p cos 2θ− − θ̇− sin 2θ− ≤ 0. (3.9b)

68

Inequalities (3.9a) and (3.9b) above represent the no-flight constraints of the

robot. Two other constraints include the non-negative push-off impulse p (sim-

ilar to the non-negative ground reaction impulse pgr):

p ≥ 0, (3.9c)

and the no-falling-down requirement, which we write as the positive height of

the hip above the ground:

y = cos θ > 0. (3.9d)

Four inequalities (3.9) represent the walking constraints of the simple IP

model in 2D. One or more additional constraints may be imposed, based on

a specific problem. Examples of such constraints can be found in Sec. 2.5.1. The

walking constraints (3.9) above repeat the results in Wolsflag’s work [96].

3.1.2 Poincaré map

For the viability and controllability analysis, we want to know how the state of

the robot changes after each step. We have defined a step to start at midstance

and end at the next midstance (see Chapter 2 on page 15). For the planar IP

model, the midstance is the instant when the stance leg is vertical, i.e. when the

stance leg angle is zero:

Midstance: θ = 0. (3.10)

Recall from Section 2.4.3, that the midstance is one-dimensional. We describe it

by a single variable, velocity v = θ̇ of the hip.

Given the initial midstance velocity θ̇0 and two control parameters (the step

size xst and push-off p), we want to find the velocity θ̇1 at the next midstance.

69

We use the total mechanical energy of the robot for our calculations, as it is con-

served during the single stance motion between collisions. In non-dimensional

form the energy is given by

E = cos θ +
1
2
θ̇2. (3.11)

We write the conservation of energy between the initial midstance and the in-

stant just before the heel-strike:

1 +
1
2
θ̇2

0 = cos θ− +
1
2

(θ̇−)2.

Solving the above equation for the stance leg angle θ̇− just before the collision,

we find

θ̇− =

√
2 − 2 cos θsw + θ̇2

0. (3.12)

Note, that we only consider non-negative θ̇− above, because we assume forward

motion of the robot. Similarly, we use the conservation of energy between the

instant just after the heel-strike and the next midstance:

1 +
1
2
θ̇2

1 = cos θ+ +
1
2

(θ̇+)2,

to find velocity θ̇+ in terms of the final velocity θ̇1:

θ̇+ =

√
2 − 2 cos θsw + θ̇2

1. (3.13)

Velocities θ̇− and θ̇+ just before and just after the collision are related to each

other by the collision velocity jump (3.8). Plugging expressions (3.12) and (3.13)

above into equation (3.8), we obtain√
2 − 2 cos θsw + θ̇2

1 = −p sin 2θsw + cos 2θsw

√
2 − 2 cos θsw + θ̇2

0. (3.14)

Equation (3.14) above represents the Poincaré map of the system: it estab-

lishes the relationship between the initial and final velocities θ̇0 and θ̇1, and the

70

controls for the step (the push-off p and the swing leg collision angle θsw, which

is a function of the step size xst according to (3.3)).

We also write the four walking constraints (3.9) of the model in terms of θ̇0,

θ̇1, p, and θsw. The flight-after-push-off constraint (3.9b) is transformed using

formula (3.4) for θ− and (3.12) for θ̇−, to become

p cos 2θsw + sin 2θsw

√
2 − 2 cos θsw + θ̇2

0 ≤ 0. (3.15a)

Next, consider constraint (3.9a) representing the non-negative ground reac-

tion force Fst in the stance leg. During the single stance motion, the force Fst is

bigger when the angle rate θ̇ of the leg is smaller, and vice versa. That is, Fst

increases as the robot moves from the initial midstance to heel-strike, and de-

creases from heel-strike to the next midstance. Therefore, it is sufficient to check

that the force in the stance leg is non-negative only at the instants just before

and just after the collision:

cos θsw − (θ̇−)2 ≥ 0, cos θsw − (θ̇+)2 ≥ 0.

Plugging expressions (3.12) for θ̇− and (3.13) for θ̇+ into the inequalities above,

gives us

2
3

(
1 +

1
2
θ̇2

0

)
≤ cos θsw, (3.15b)

2
3

(
1 +

1
2
θ̇2

1

)
≤ cos θsw. (3.15c)

The two constraints above restrict the maximum allowed collision angle θsw

(hence, the step size xst too) for each initial velocity θ̇0 and final velocity θ̇1 re-

spectively.

Similar to the leg tension constraint, the no-falling constraint (3.9d) requires

checking only at the instant of collision, when the height of the hip above the

71

ground is lowest:

cos θsw > 0.

However, the inequality above is guaranteed to hold true, whenever either of

the conditions (3.15b) or (3.15c) is satisfied. Therefore, we do not include the

above inequality into the constraints of the model. Finally, the non-negative

push-off constraint (3.9c) also applies:

p ≥ 0. (3.15d)

The Poincaré map (3.14), the step size equation (3.3), and the four constraints

(3.15) define all combinations of the four parameters — the initial and final hip

velocities θ̇0 and θ̇1, and the controls p and xst — which correspond to a non-

failed step of the planar IP model. For example, if velocity θ̇1 is fixed, then these

equations define all possible initial velocities θ̇0 and corresponding push-offs p

and step sizes xst, which let the robot reach velocity θ̇1 at the next midstance.

That is, they define the 1-step controllable region corresponding to the target

velocity θ̇1 (see Section 3.2.2 for numerical computation of the region C1). The

Poincaré map and the no-flight constraints of the planar IP model were derived

by Wolfslag in [96].

3.2 Viability and controllability of the 2D IP model

In this section we compute the extended viable and controllable regions V̄n and

C̄n for the 2D IP model. We also compute the (superficially simpler to describe)

viable and controllable regions Vn and Cn by ‘dropping’ controls u from each

extended viable state (q, u). The definitions of the regions Vn, Cn, V̄n, and C̄n are

in Sections 2.1, 2.2, 2.6.1, and 2.6.3 correspondingly.

72

Our model has one state variable (velocity θ̇ at midstance) and two control

variables (push-off p and step size xst). Therefore, an extended state may have

up to three coordinates, (θ̇, p, xst), leading to three-dimensional extended viable

and controllable regions V̄ p,xst
n and C̄p,xst

n . However, for the purposes of simplicity

(analytical, numerical, and graphical) we prefer to work with regions with two

or fewer dimensions. We extend the state space by only one control variable at

a time. We consider separately the regions V̄ xst
n , C̄xst

n extended by the step size

xst and the regions V̄ p
n , C̄p

n extended by the push-off p. Nevertheless, we later

show the full three-dimensional extended viability kernel V̄ p,xst
∞ and the three-

dimensional extended∞-step controllable region C̄p,xst
∞ in Appendix C.3 on page

182.

3.2.1 Allowed states and controls

We first describe all non-failed states at midstance and feasible controls of the

model — that is, the 0-step viable region V0 and the extended 0-step viable re-

gions V̄ xst
0 and V̄ p

0 .

A state of the robot at midstance (velocity θ̇) is not failed, if the tension in the

stance leg is non-negative. Therefore, from (3.9a) we get:

cos θ − θ̇2 =
at midstance

1 − θ̇2 ≥ 0.

Considering only positive velocities (only motion forward), gives us all non-

failed states, i.e. the 0-step viable region V0:

V0 : 0 ≤ θ̇ ≤ 1. (3.16a)

For now, we do not restrict the push-off amount p from above (we do not limit

strengths) and allow any non-negative push-off, as stated by (3.9c). Hence, the

73

extended 0-step viable region V̄ p
0 is

V̄ p
0 : 0 ≤ θ̇ ≤ 1, p ≥ 0. (3.16b)

The step size xst cannot be negative (no backward motion) and is physically con-

strained from above by the total length of both legs (i.e. by 2). So, the extended

region V̄ xst
0 is

V̄ xst
0 : 0 ≤ θ̇ ≤ 1, 0 ≤ xst ≤ 2. (3.16c)

The 0-step regions V0, V̄ xst
0 , and V̄ p

0 are shown on Fig. 3.5 on page 86. The figure

also depicts the viable regions Vn and extended viable regions V̄ xst
n and V̄ p

n , which

we find in Section 3.2.4.

3.2.2 One-step controllability

We use the iterative procedure described in Section 2.7.4 on page 60 to com-

pute the controllable and extended controllable regions. First, we describe the

extended controllability map ˆ̄C — we find the extended 1-step controllable re-

gions C̄xst
1 and C̄p

1 corresponding to an arbitrary target state.

For our planar IP model, an arbitrary target state is represented by a desired

velocity θ̇t of the hip at midstance. The region C̄xst
1 is all possible combinations

(θ̇0, xst) of initial velocity θ̇0 and step size xst, for which there is a feasible push-off

p, such that the robot reaches the target velocity θ̇t at the next midstance. Recall

from Section 3.1.2, that a step of the robot is not failed, if the values of θ̇0, xst, p

and the final velocity θ̇1 satisfy the Poincaré map equations (3.14), (3.3) and the

four walking constraints (3.15). Therefore, the region C̄xst
1 is given by all θ̇0 and

xst, which satisfy equalities (3.14), (3.3) and inequalities (3.15) for some value of

p and the fixed final velocity θ̇1 = θ̇t. We are going to find the region C̄xst
1 by

74

providing analytical equations for its boundary curves. We also illustrate C̄xst
1

on Fig. 3.2b for the example case

θ̇t = 0.3 (3.17)

(corresponding to ≈ 0.94 m/s for a robot with one-meter-long legs).

For each of the constraints (3.15) we find all θ̇0 and xst, where this constraint

is active, i.e. turns into equality. The non-negative push-off constraint (3.15d) is

active when p = 0. Plugging zero push-off into the Poincaré map (3.14) gives us√
2 − 2 cos θsw + θ̇2

t = cos 2θsw

√
2 − 2 cos θsw + θ̇2

0,

which can be further transformed into

θ̇2
0 =

(2 − 2 cos θsw) sin2 2θsw + θ̇2
t

cos2 2θsw
. (3.18a)

Note, the swing leg angle θsw (for −π/2 ≤ θsw ≤ 0) is a one-to-one function (3.3)

of the step size xst. Hence, equation (3.18a) above defines a curve in the (θ̇0, xst)-

plane. This is the bottom-right boundary of C̄xst
1 on Fig. 3.2b. For each given

initial velocity, the curve (3.18a) shows where the robot has to step in order to

reach the target in one step and without pushing off.

Similarly, the flight-after-push-off constraint (3.15a) is active, when

p cos 2θsw + sin 2θsw

√
2 − 2 cos θsw + θ̇2

0 = 0.

Solving the above equation for p and plugging the result into the Poincaré map

(3.14), we obtain

θ̇2
0 = −(2 − 2 cos θsw) sin2 2θsw + θ̇2

t cos2 2θsw. (3.18b)

Equation (3.18b) defines a curve in the (θ̇0, xst)-plane — the bottom-left boundary

of C̄xst
1 on Fig. 3.2b. The stepping locations corresponding to this curve are such

75

that, with an appropriate push-off, the robot reaches the target velocity θ̇t in one

step and has no collisional impact.

The flight-before-collision constraint (3.15b) gives us the top-right boundary

of C̄xst
1 :

cos θsw =
2 + θ̇2

0

3
. (3.18c)

For each initial velocity, the above curve shows the largest step the robot is able

to take without failing. For such steps, the tension in the stance leg becomes zero

just before the instant of collision. Notice, that the curve (3.18c) is independent

of the chosen target θ̇t. Therefore, it restricts all extended viable regions V̄ xst
n and

all extended controllable regions C̄xst
n (see Figs. 3.5b and 3.4b below). If the robot

attempts to take a step larger than that specified by (3.18c), the constraint (3.15b)

will be violated at some point during the stance phase. A good analogy for

the motion corresponding to (3.18c) was suggested by Wolfslag [96]. Imagine a

massive point sliding off the top of a circular hill, with a positive initial velocity.

The motion of the mass is equivalent to the motion of the hip in the IP model.

Note the angle where the mass detaches from the surface of the hill. This angle

corresponds to the maximum collision angle θsw (hence, the maximum step size

for the given initial velocity) of the IP model and is given by equation (3.18c).

As opposed to the boundary (3.18c), the flight-after-collision constraint

(3.15c) defines the largest allowed step size for a given target velocity θ̇t:

cos θsw =
2 + θ̇2

t

3
. (3.18d)

This is the top horizontal boundary of C̄xst
1 on Fig. 3.2. For the step sizes defined

by (3.18d), the stance leg tension is zero just after the instant of collision, assum-

ing the appropriate push-off p, which brings the robot to the target at the next

midstance.

76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

next push-o� is negative

�ight before
next heelstrike

�ight after next heelstrike

�ight after
next push-o�

zero leg tension just before
collision

zero push-o�

zero leg tension after collision

zero collision im
pact

target velocity

step sizes which let robot
reach target within one step

C
_

1
xst

midstance
velocity

θ̇0

next step
size

xst

V0
all non-failed states

midstance
velocity

C1

possible to reach target
within one step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
target velocity

θ̇0

0
0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�ight after
next push-o�

�ight before next
heelstrike

�ight after next heelstrike

zero leg tension after collision
zero leg

 tension just before collision

push-o�s which let robot
reach target within one step

zero collision impact

C
_

1
p

target velocity

zero push-o�

midstance
velocity

θ̇0

next
push-o�

p

(a) 1-step controllable
region

(b) Extended 1-step
controllable region:

step size controls

(c) Extended 1-step
controllable region:

push-o� controls

Figure 3.2: 1-step controllable and extended controllable regions for the 2D IP model.
(a) The 1-step controllable region C1 is all initial velocities θ̇0, for which the robot can
reach the target within one step. The target here is the velocity θ̇t = 0.3 at midstance.
(b), (c) For each velocity θ̇0, the extended 1-step controllable regions C̄xst

1 and C̄p
1 show,

respectively, all step-sizes xst and push-offs p, which let the robot reach the target within
one step. The boundary curves of C̄xst

1 and C̄p
1 correspond to the walking constraints of

the model. For step sizes/push-offs beyond these curves, the robot either fails or does
not reach the target. The region C1 is the projection of both C̄xst

1 and C̄p
1 onto the θ̇0-axis.

77

Each of the four curves (3.18) cuts off a part of the extended space (initial

velocities θ̇0 and step sizes xst), where the robot either fails or is not able to reach

the target within one step. Thus, the curves (3.18) form the boundaries of the ex-

tended 1-step controllable region C̄xst
1 for an arbitrary target velocity θ̇t. Fig. 3.2b

shows the region C̄xst
1 for the target (3.17). For any given initial velocity θ̇0, C̄xst

1

shows the range of step sizes available to the step-size controller, such that the

robot can, with an appropriate push-off p, reach the target velocity θ̇t within

one step. For example, for θ̇0 = 0.4 the allowed step sizes are approximately

0.56 ≤ xst ≤ 1.39. The appropriate push-offs are described by the extended 1-

step controllable region C̄p
1 , which we derive in this section below.

All initial velocities, for which there is at least one step size in C̄xst
1 (i.e. the

projection of C̄xst
1 onto the θ̇0-axis), constitute the 1-step controllable region C1,

shown on Fig. 3.2a. If the robot’s velocity at midstance is outside of C1, there is

no way for the robot to reach the target velocity in one step. For the target (3.17),

the maximum 1-step controllable velocity is θ̇0 ≈ 0.82.

We would also like to know all push-offs p, which let the robot reach the

target within one step. Such push-offs are described by the extended 1-step

controllable region C̄p
1 . It consists of all combinations (θ̇0, p) of initial velocity

θ̇0 and push-off p, for which there is a feasible step size xst such that the robot

reaches the target θ̇t at the next midstance. The region C̄p
1 for the target (3.17)

is shown on Fig. 3.2c. Similar to the derivation of C̄xst
1 above, we obtain the

boundaries of C̄p
1 by finding all p and θ̇0, for which the walking constraints (3.15)

turn into equalities. Thus, the stance-leg-tension constraints (3.15b) and (3.15c),

78

in combination with the Poincaré map (3.14), yield

p = cot 2θsw

√
2 − 2 cos θsw + θ̇2

0 −
1

sin 2θsw

√
2 − 2 cos θsw + θ̇2

t , (3.19a)

where cos θsw =
2 + θ̇2

0

3

and

p = cot 2θsw

√
2 − 2 cos θsw + θ̇2

0 −
1

sin 2θsw

√
2 − 2 cos θsw + θ̇2

t , (3.19b)

where cos θsw =
2 + θ̇2

t

3

respectively. The two above formulas differ only in the expressions for cos θsw.

(3.19a) and (3.19b) each define a curve in the (θ̇0, p) plane — these are, corre-

spondingly, the top-right and top-left boundaries of the region C̄p
1 on Fig. 3.2c.

Next, the flight-after-push-off constraint (3.15a) and the Poincaré map (3.14)

give us 
p = − sin 2θsw

√
2 − 2 cos θsw + θ̇2

t ,

θ̇2
0 = θ̇2

t cos2 2θsw − (2 − 2 cos θsw) sin2 2θsw.
(3.19c)

We cannot eliminate θsw from the above equations analytically. Instead, for dif-

ferent initial velocities θ̇0 in the range 0 ≤ θ̇0 ≤ 1 (all 0-step viable velocities)

we numerically solve the system (3.19c) for p. All calculations are performed

in Matlab using a non-linear equation solver fsolve. The resulting curve in the

(θ̇0, p) coordinates is the bottom-left boundary curve of C̄p
1 . Finally, the non-

negative push-off constraint (3.15d) restricts the region C̄p
1 by the horizontal axis:

p = 0. (3.19d)

The four curves (3.19) form the boundaries of the region C̄p
1 , as shown on

Fig. 3.2c. For each velocity θ̇0, C̄p
1 shows the range of all push-offs p, which let

79

Controllability for different targets
target velocity θ̇t = 0 target velocity θ̇t = 0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

target velocity

next push-o� is negative

�ight before next
heelstrike

zero leg tension just before collision

zero push-o�

possible to reach target
within one step

C
_

1
xst

midstance
velocity

θ̇0

next step
size

xst

V0 all non-failed states
C1

possible to reach target
within one step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
target velocity

midstance
velocity

θ̇0

(a) 1-step controllable region C1

0
0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

zero leg tension just before collision

�ight before
next collision

possible to reach target
within one step

C
_

1
p

target velocity
midstance

velocity

θ̇0

next
push-o�

p

(c) 1-step controllability: step sizes

(e) 1-step controllability: push-offs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5 zero leg tension just before collisionzero leg tension after collision

zero collision impact

ze
ro

 p
ush

-o�

�ight after next heelstrike
�ight before

next heelstrike

�ight after next
push-o� next push-o�

is negative

target velocity

C
_

1
xst

midstance
velocity

θ̇0

next step
size

xst

V0 all non-failed states

C1

possible to reach target
within one step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
target velocity

midstance
velocity

θ̇0

(b) 1-step controllable region C1

00

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

zero collision impact

zero leg tension after collision

zero leg tension just before collision

�ight after
next push-o�

�ight before
next collision

target velocity

C
_

1
p

�ight after next
collision

midstance
velocity

θ̇0

next
push-o�

p

(d) 1-step controllability: step sizes

(f) 1-step controllability: push-offs

Figure 3.3: 1-step controllability of the 2D IP model for different targets. This figure
is analogous to the Fig. 3.2 on page 77, but for different target velocities θ̇t. The graphs
(a), (c), (e) assume θ̇t = 0, while the graphs (b), (d), (f) consider θ̇t = 0.8. In the case
θ̇t = 0, the 1-step controllable region C1 is equivalent to Koolen’s 1-step viable-capture
basin [42]. Fig. 3.2, where the target is θ̇t = 0.3, would be a column of figures between
the two columns on this Fig. 3.3.

the robot reach the target at the next midstance. Similar to C̄xst
1 , the projection of

C̄p
1 onto the θ̇0-axis is the 1-step controllable region C1 shown on Fig. 3.2a.

We also show examples of the 1-step regions C1, C̄xst
1 , and C̄p

1 for target veloc-

ities, different from (3.17). Fig. 3.3 shows such regions for the target velocities

θ̇t = 0 (plots (a), (c), (e) on the left) and θ̇t = 0.8 (plots (b), (d), (f) on the right).

80

Controllable regions for a zero target velocity of θ̇0 = 0 correspond to Koolen’s

viable-capture basins [42].

3.2.3 n-step and∞-step controllability

We now compute the n-step controllable regions Cn and extended n-step control-

lable regions C̄xst
n and C̄p

n (see Sections 2.2 and 2.6.3 for definitions) for our planar

IP model for n≥ 2. The region Cn is all initial velocities θ̇0, such that the robot

can, with appropriate controls, reach the target in n or fewer steps. The corre-

sponding appropriate controls are studied by the extended regions: C̄xst
n (and,

respectively, C̄p
n) is all combinations of velocities θ̇0 and step sizes xst (push-offs

p) for the next step, which let the robot reach the target within n steps.

We compute the regions C̄xst
n and C̄p

n numerically, according to the iterative

procedure described in Sec. 2.7.4 on page 60 (see step (III) of the procedure). We

use the example target velocity (3.17). Technical details of the computation are

in Appendix C.1 on page 179. Figs. 3.4b and 3.4c show, correspondingly, the

regions C̄xst
n and C̄p

n for several values of n. The projections of both C̄xst
n and C̄p

n

onto the θ̇0-axis are the n-step controllable regions Cn, shown on Fig. 3.4a. The

controllable regions Cn for the 2D IP model were also derived by Wolfslag [96].

The 1-step regions C1, C̄xst
1 , and C̄p

1 on Fig. 3.4 are the same as those on Fig. 3.2.

Note also the nested structure of the presented regions: Cn ⊂ Cn+1 for n≥ 0, and

C̄xst
n ⊂ C̄xst

n+1, C̄p
n ⊂ C̄p

n+1 for n≥ 1.

Notice, that the top-right boundaries of all C̄xst
n are parts of the same curve.

As discussed in Sec. 3.2.2 above, this is the curve (3.18c), which corresponds to

the motion with zero tension in the stance leg just before the instant of collision.

81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

target velocity

zero leg tension just before next collision

C
_

1
xst

C
_

2
xst

C
_

2
xst

C
_

3
xst

zero leg tension just after next collision

possible to reach target
within one step

possible to reach target
within two steps

zero collision impact

zero push-o�

ze
ro

 p
ush

-o�

C
_

∞
xst

possible to
reach target

midstance
velocity

θ̇0

next step
size

xst

C1

possible to reach target
within one step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

target velocity

C2

C3

C∞

possible to reach target
within two steps

possible to reach target

midstance
velocity

θ̇0

target velocity
0

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

zero leg tension just before and just after next collisionpossible to reach target
within one step

C
_

1
p

C
_

2
p

possible to
 reach target
 within two
 steps

C
_

3
p

C
_

2
p

zero leg tension just after next collision

zero collision impact

C
_

∞
p

possible to
reach target

zero push-o�

zero leg tension just before
next collision

midstance
velocity

θ̇0

next
push-o�

p

(a) Controllable regions

(b) Extended
controllable regions:

step size controls

(c) Extended
controllable regions:

push-o� controls

Figure 3.4: n-step controllability of the 2D IP model. (a) The n-step controllable
region Cn is all initial velocities θ̇0, for which the robot can reach the target velocity θ̇t
in n or fewer steps. Here θ̇t = 0.3. (b), (c) For each θ̇0, the extended n-step controllable
regions C̄xst

n and C̄p
n show, respectively, all step sizes xst and push-offs p of the next step,

which let the robot reach the target in n or fewer steps. The regions Cn, C̄xst
n , and C̄p

n
form sequences of nested regions, which approach the ∞-step regions C∞, C̄xst

∞ , and C̄p
∞

(shown by their boundary) correspondingly. These are, respectively, all velocities θ̇0
and combinations (θ̇0, xst) and (θ̇0, p) of velocities and controls for which the target can
be reached or approached asymptotically. Each Cn is the projection of both C̄xst

n and C̄p
n

onto the θ̇0-axis.

82

As n increases, the regions C̄xst
n appear to approach a fixed area in the plane,

the area below the curve (3.18c). Therefore, following step (IV) of the iterative

procedure on page 60, we say that the region below the curve (3.18c) is the

extended∞-step controllable region C̄xst
∞ :1

C̄xst
∞ : 0 < θ̇0 < 1, 0 ≤ xst ≤ 2 sin

arccos
2 + θ̇2

0

3

. (3.20)

We used equation (3.3) to write the curve (3.18c) in terms of the step size xst in

the formula above. The lines θ̇0 = 0 and θ̇0 = 1 are not in C̄xst
∞ , because they

correspond to ‘standing’ in place with infinitely small and infinitely fast steps.

In these cases, according to the Poincaré map (3.14) and constraints (3.15), xst =

p = 0 and there is no change in the hip velocity: θ̇1 = θ̇0.

Similar to C̄xst
n , the regions C̄p

n on Fig. 3.4c approach a fixed region, the ex-

tended ∞-step controllable region C̄p
∞. As shown in Appendix C.2 on page 181,

the top boundary of C̄p
∞ is the curve

p =

√
3

2 + θ̇2
0

−
2 + θ̇2

0

3
. (3.21)

This curve corresponds to the motion, such that the tension in the stance leg is

zero both just before and just after the instant of collision. The extended∞-step

controllable region C̄p
∞ is the area below the curve (3.21):

C̄p
∞ : 0 < θ̇0 < 1, 0 ≤ p ≤

√
3

2 + θ̇2
0

−
2 + θ̇2

0

3
. (3.22)

The projection of both C̄xst
∞ and C̄p

∞ onto the velocity axis is the ∞-step con-

trollable region C∞, shown on Fig. 3.4a. C∞ is the limit of the n-step controllable

regions Cn as n increases. We can immediately compute the region C∞ by ignor-

ing the controls xst in the formula (3.20) for C̄xst
∞ (or, equivalently, the controls p

1 Recall, that by definition (see Sec. 2.6.3), C̄xst
∞ is the limit of the regions C̄xst

n as n→∞.

83

in (3.22) for C̄p
∞):

C∞ : 0 < θ̇0 < 1. (3.23)

Computation of the extended controllable regions for target velocities θ̇t,

other than (3.17), reveals that the ∞-step regions C∞, C̄xst
∞ , and C̄p

∞ stay the same

for any target 0 ≤ θ̇t ≤ 1. As we show in Section 3.2.4 below, they are (almost)

equal to the viable regions V∞, V̄ xst
∞ , and V̄ p

∞ correspondingly.

As one can see in Fig. 3.4, the two-step controllable region C2 is most (∼ 95%)

of the∞-step controllable region C∞. Similarly, the extended regions C̄xst
2 and C̄p

2

are close to C̄xst
∞ and C̄p

∞ respectively. This supports, for the case of the 2D IP

model, the ‘Two-step controllability’ claim we made in Section 2.3.2 on page 26:

if it is possible to reach a given target, in most cases it is possible to reach it in

two steps. This two-step result remains valid in the case of limited actuation of

the model, as we show in Section 3.2.5 below.

3.2.4 Viable and extended viable regions

We now compute the viable and extended viable regions Vn, V̄ xst
n , and V̄ p

n for our

planar IP model. These regions represent all initial velocities θ̇0 and next-step

controls (step sizes xst or push-offs p), such that the robot is able to take n steps

and not fail. We do not use the (general) numerically expensive procedure de-

scribed in Section 2.7.3; instead, we use some analytical insights about the model

and the extended controllable regions (computed above in Section 3.2.3) in or-

der to find the viable and extended viable regions. The 0-step regions V0, V̄ xst
0 ,

and V̄ p
0 (which represent all allowed states and controls) are already described

in Section 3.2.1 on page 73.

84

First, notice that for our simple model and any non-failed initial velocity θ̇0, a

step formally can be made infinitely small and infinitely fast (i.e. the robot puts

the swing leg down at midstance). For such step, one can set xst = p = 0 to see

that all walking constraints (3.15) are satisfied and, according to the Poincaré

map (3.14), the hip velocity does not change: θ̇1 = θ̇0. Therefore, the robot can

always take an arbitrary large number of steps without failing. This means that

all n-step viable regions are the same and equal to V0:

V∞ = Vn = V0 : 0 ≤ θ̇0 ≤ 1 (3.24)

for any n≥ 0. The ability to take one step is equivalent to the ability to take any

number of steps, and to just being in a non-failed state. Equality (3.24), however,

is rather a result of the simplicity of our planar IP model — it may not hold true

for more complex models and does not hold with the 2D IP model if additional

constraints are considered. In Section 3.2.5 below we consider the 2D IP model

with leg swinging and push-off limitations.

We also note that all viable regions (3.24) are the same as the∞-step control-

lable region C∞, given by (3.23) (except for velocities θ̇0 = 0 and θ̇0 = 1, which

are∞-step viable, but not controllable, as pointed out in Section 3.2.3 above):

V0 = Vn = V∞ ≈
except for

boundary points

C∞. (3.25)

The above result confirms, for the case of the 2D IP model, the ‘Viable is Con-

trollable’ conjecture we made in Section 2.3.1 on page 25: in most cases, when

the robot is able to not fail, it is also able to reach any given target.2 Below we

find the extended viability kernels V̄ xst
∞ and V̄ p

∞ for our model, and show that the

‘Viable is Controllable’ claim holds true for them too.
2 The result (3.25) is even stronger: the robot is able, with appropriate controls, to reach any

target from (almost) any non-failed initial state.

85

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

1.2

1.6

2

step sizes which let robot
take n steps and not fail

V
_

n
xst = V

_

∞
xst (for any n≥1)

V
_

0
xst

 \ V
_

1
xst impossible to

stay up even
one step

�ying

zero leg tension just before collision

midstance
velocity

θ̇0

next step
size

xst

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

zero leg tension just before and after collision

V
_

0
p

 \ V
_

1
p

impossible to
stay up even

one step

midstance
velocity

θ̇0

next
push-o�

p

push-o�s which let robot
take n steps and not fail

V
_

n
p = V

_

∞
p (for any n≥1)

0 0.2 0.4 0.6 0.8 1

V0 = Vn = V∞

all non-failed
states

possible to
take n steps possible to

never fail

midstance
velocity

θ̇0

(a) Viable regions

(b) Extended viable
regions: step size

controls

(c) Extended viable
regions: push-o�

controls

�ying

Figure 3.5: Viable and extended viable regions for the 2D IP model. (a) The n-step
viable region Vn is all initial velocities θ̇0, for which the robot can, with appropriate
controls, take at least n steps and not fail. (b), (c) For each θ̇0, the extended n-step viable
regions V̄ xst

n and V̄ p
n show, respectively, all step sizes xst and push-offs p of the next step,

which let the robot take n or more steps without failing. The regions Vn, V̄ xst
n , and V̄ p

n
form sequences of nested regions, which approach the ∞-step regions V∞, V̄ xst

∞ , and V̄ p
∞

(shown by their boundary) correspondingly. These are, respectively, all velocities θ̇0 and
combinations (θ̇0, xst) and (θ̇0, p) of velocities and controls for which the robot is able to
step indefinitely. The 0-step regions V0, V̄ xst

0 , V̄ p
0 represent all non-failed velocities and

allowed controls.

86

The target (3.17), which we considered in Section 3.2.3 above to compute the

controllable and extended controllable regions, is inside the viability kernel V∞.

Therefore, if the robot can reach the target, it can take infinitely many steps.

Similar to (2.10), we thus say that the extended∞-step controllable region C̄xst
∞ is

a subset of the extended viability kernel V̄ xst
∞ :

C̄xst
∞ ⊂ V̄ xst

∞ . (3.26)

Therefore, the region V̄ xst
∞ includes all points below the curve (3.18c), the top

boundary curve of C̄xst
∞ (see Fig. 3.4b). On the other hand, as we stated in Sec-

tion 3.2.2, the curve (3.18c) does not depend on the target velocity and, thus,

restricts (from the top) all extended viable regions V̄ xst
n (for n≥ 1), including V̄ xst

∞ .

So, the region V̄ xst
∞ does not include any points above the curve (3.18c). We con-

clude that V̄ xst
∞ is equal to the region C̄xst

∞ — except for the cases θ̇0 = 0 and θ̇0 = 1,

which are ∞-step viable, but not controllable, as pointed out in Section 3.2.3

above:

V̄ xst
∞ : 0 ≤ θ̇0 ≤ 1, 0 ≤ xst ≤ 2 sin

arccos
2 + θ̇2

0

3

. (3.27)

The n-step regions V̄ xst
n are supersets of V̄ xst

∞ , but still have to remain below the

curve (3.18c). Hence, they are all equal and we write

V̄ xst
1 = V̄ xst

n = V̄ xst
∞ ≈

but for some
boundary points

C̄xst
∞ . (3.28)

The regions V̄ xst
n are shown on Fig. 3.5b.

We show that the relation (3.28) is also valid for the extended n-step viable

regions V̄ p
n that represent viable push-offs. Similar to the reasoning of (3.26)

above, we first say that V̄ p
∞ includes all of the extended ∞-step controllable re-

gion C̄p
∞ corresponding to the target (3.17): C̄p

∞ ⊂ V̄ p
∞ — hence, C̄p

∞ ⊂ V̄ p
∞ ⊂ V̄ p

n

for any n≥ 0. Next, assume that for a certain n≥ 1, there is a point in V̄ p
n , which

87

is outside of C̄p
∞ — let’s call this point (θ̇∗0, p∗). With the initial velocity θ̇∗0 and

first push-off p∗, the robot is able to take (at least) one step and not fail (it can

take more than one step for n> 1, but for now we are only interested in the first

step). Therefore, the robot has a non-failed velocity θ̇∗1 at the next midstance.

According to (3.23), velocity θ̇∗1 is ∞-step controllable (unless θ̇∗1 is 0 or 1), i.e.

the robot is able to reach the target starting with the velocity θ̇∗1. Then the robot

can reach the target with the initial velocity θ̇∗0 too (unless θ̇∗0 is 0 or 1) — this

contradicts the assumption that the point (θ̇∗0, p∗) is outside of C̄p
∞. We conclude

that the assumption is wrong and there is no points in V̄ p
n which are outside of

C̄p
∞. Velocities θ̇0 = 0 and θ̇0 = 1, as pointed out in Section 3.2.3 above, are∞-step

viable, but not controllable. Thus, we get

V̄ p
1 = V̄ p

n = V̄ p
∞ ≈

but for some
boundary points

C̄p
∞, (3.29)

and

V̄ p
∞ : 0 ≤ θ̇0 ≤ 1, 0 ≤ p ≤

√
3

2 + θ̇2
0

−
2 + θ̇2

0

3
. (3.30)

The extended regions V̄ p
n are shown on Fig. 3.5c. The relations (3.28) and (3.29)

justify, for the case of the extended controllable regions of the 2D IP model, our

‘Viable is Controllable’ claim in Section 2.3.1.

3.2.5 Additional constraints

Section 2.5.1 on page 33 discusses possible constraints which one may impose

on a simple model of the robot. Such constraints can serve as a proxy for lim-

itations of the more complicated model or the environment. For our planar IP

model, we consider two such constraints, which represent actuator limitations

of the robot. We compute the controllable and extended controllable regions for

88

the constrained model and see how the controllability of the robot is affected by

these limitations.

First, we bound from above the amount of push-off p, available to the con-

troller at any collision, by a fixed positive value pmax:

p ≤ pmax (3.31a)

The above constraint represents limited actuation in the ankle motors (or tele-

scopic leg actuators) on a physical robot. Next, we would like to account for

limited swing-leg actuation in the robot. As opposed to our simple IP model, a

controller on a physical robot cannot move the swing leg infinitely fast; a cer-

tain minimum time is required to place the leg into the desired position (defined

by the step size xst). We model this requirement with the step time tst, the time

from the midstance to the next collision. We say that the step time has to be not

smaller than a preset positive constant tst,min:

tst ≥ tst,min > 0 (3.31b)

Constraint (3.31b) is a (rough) proxy for the swing-leg actuator limitations of

the robot (e.g. the torque limits of the hip motor). During ‘normal walking’, the

step time tst is approximately one half of the total duration of a step (midstance-

to-midstance time).

We use the example bounds pmax = 0.25 and tst,min = 0.5 (both are non-

dimensional), which are chosen only to demonstrate the changes in the con-

trollable regions due to the limited actuation. For comparison, the estimated

maximum push-off for the Cornell Ranger robot [9, 11] is 0.3 (see Section 6.1.2).

The estimated minimum step-time is 0.4 for Ranger and 0.26 (∼ 0.09 sec.) for

humans [79].

89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

target velocity

C
_

1
xst

C
_

2
xst

C
_

3
xst

midstance
velocity

θ̇0

next step
size

xst

C
_

1
xst

C
_

2
xst

C
_

3
xst

zero leg tension just before next collision
max. allowed push-o�

min. allowed step time

zero collision impact

zero push-o�

C
_

∞
xst

possible to
reach target

in dim color are
extended controllable regions
for the unconstrained model

example periodic
trajectory

C1

possible to reach target
within one step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C2 = C∞

possible to reach target
within two steps

possible to reach target

midstance
velocity

θ̇0V0
all non-failed states

target velocity

0
0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
_

1
p

C
_

2
p

C
_

3
p

midstance
velocity

θ̇0

next
push-o�

p

C
_

1
pC

_

2
p

C
_

3
p

zero collision impact

zero leg tension just
before collision

C
_

∞
p

possible to
reach target

in dim color are
extended controllable regions
for the unconstrained model

target velocitymin. allowed
step time

min. allowed
step time

zero leg tension
just before next

collision
+

max. allowed push-o�

example periodic
trajectory

(a) Controllable regions

(b) Extended
controllable regions:

step size controls

(c) Extended
controllable regions:

push-o� controls

Figure 3.6: n-step controllability of the 2D IP model with limited actuation. This
figure is analogous to Fig. 3.4 on page 82, but assumes limited actuation of the planar
IP model. The limitations are: the maximum allowed push-off (p ≤ pmax) and the min-
imum allowed step time (tst ≥ tst,min, time from midstance to heel-strike). Constrained
step time is a proxy for swing-leg actuator limitations. We use pmax = 0.25, tst,min = 0.5.
For our constrained model, C2 = C∞, C̄xst

3 = C̄xst
∞ , and C̄p

3 = C̄p
∞. The extended control-

lable regions for the unconstrained IP model (see Fig. 3.4) are shown in dim color for
comparison.

90

We numerically compute the extended controllable regions C̄xst
n for the con-

strained model by (almost) the same numerical calculations we used for the

unconstrained IP model in Sections 3.2.2 and 3.2.3 above. The only required

change in the calculations is in the computation of the extended controllability

map ˆ̄C(θ̇t) (i.e. the extended 1-step controllable region) for an arbitrary target

velocity θ̇t (see discussion in Section 2.7.5 on page 61). All regions C̄xst
n for n≥ 2

are then computed with the same calculations as in Section 3.2.3, based on the

map ˆ̄C(θ̇t).

Consider the example target velocity (3.17). The region C̄xst
1 for the con-

strained model includes all of the corresponding unconstrained region (see

Fig. 3.2b), except for the points (θ̇0, xst) for which the bounds (3.31) cannot be

satisfied (i.e. for which the robot cannot reach the target in one step and obey

(3.31)). Notice, that for given θ̇0 and xst both the push-off p and step time tst, such

that the target is reached in one step, are unique: p is defined by the Poincaré

map (3.14), tst by numerical integration of the ODE (3.1) until the instant of colli-

sion.3 Thus, for any point (θ̇0, xst) we can determine whether the actuation limits

(3.31) are met. Discretizing the (θ̇0, xst)-plane and removing from the uncon-

strained region all points violating (3.31), we approximately find the region C̄xst
1

for the constrained model. The region is shown on Fig. 3.6b.

The same procedure can be used to compute the region C̄xst
1 , i.e. the map

ˆ̄C(θ̇t), for any target, different from (3.17). Therefore, we follow the calcula-

tions in Section 3.2.3 to numerically calculate the n-step regions C̄xst
n for our

constrained model. The regions C̄xst
n for the target velocity (3.17) are shown on

Fig. 3.6b. Similarly, we compute the extended regions C̄p
n , which are shown on

Fig. 3.6c. The n-step controllable regions Cn are projections of the extended re-

3 We use the ode45 solver in Matlab for numerical integration.

91

gions C̄xst
n (or C̄p

n) onto the velocity axis; Cn can be found on Fig. 3.6a.

According to our numerical results, C̄xst
n = C̄xst

3 for all n≥ 3. Therefore, C̄xst
3 is

equal to the extended∞-step controllable region C̄xst
∞ (similarly for C̄p

3 and C̄p
∞):

C̄xst
∞ = C̄xst

3 , C̄p
∞ = C̄p

3 . (3.32)

At the same time, the convergence is even ‘faster’ for the n-step controllable

regions Cn. As one can see from Fig. 3.6a, the ∞-step controllable region C∞ is

the same as C2:

C∞ = C2. (3.33)

That is, the robot can always reach the target in two or fewer steps, when it is

possible to reach the target at all. Result (3.33) supports our ‘Two-step control-

lability’ claim in Section 2.3.2 on page 26. The claim holds true for the extended

controllability as well: the regions C̄xst
2 and C̄p

2 occupy most of their respective

∞-step regions C̄xst
∞ and C̄p

∞, as one can see from Figs. 3.6b and 3.6c.

Enforcement of the actuation limits (3.31) significantly reduces the size of

the extended controllable regions (the regions for the unconstrained model are

shown in dim color on Fig. 3.6). That is, there is a smaller choice of control strate-

gies, which bring the robot to the target — this is expected, because constraints

(3.31) directly restrict available actuation in the robot. However, these con-

straints have a smaller effect on the controllability of the robot, i.e. on the∞-step

controllable region C∞. Only in extreme situations (large velocities θ̇0 > 0.84) the

robot cannot return to the target (or even avoid a failure) due to the insufficient

actuation. We note though, that even without a large effect on controllability,

limited actuation may worsen other important characteristics of a walking con-

troller, such as robustness and stability. For example, in Section 6.2.3 we argue

that smaller extended controllable regions may imply a less robust controller,

92

because control might have to be near one of its limits. More detailed discus-

sion of different properties of controllers and their connection with controllable

regions can be found in Section 6.2 on page 143, where we design a walking

controller for Cornell Ranger robot.

3.3 On robustness of passive dynamics

Passive walkers [51, 20] (Section 1.1.1) have only a small basin of attraction

around their periodic trajectories [20, 75]. Actuated robots based on passive-

dynamics share poor robustness with their fully passive parents and do not

walk reliably even on level ground [22]. Now we use the controllable regions

of the IP model to compare robustness of passive walkers with what might be

possible with actively controlled robots.

Schwab and Wisse [75] studied the ‘Simplest Walking (SW) model’ — a 2D pas-

sive walker with two rigid legs and a point mass at the hip and at each foot —

which was first described by Garcia et al. [27]. The foot mass is assumed sig-

nificantly smaller than the mass at the hip. The SW (Schwab-Wisse or Simplest-

Walking) model has stable periodic gaits on slopes below γ≈ 0.019 rad. Schwab

and Wisse computed the basin-of-attraction of a specific periodic trajectory of

the SW model, which we show here in Fig. 3.7.4 The basin-of-attraction includes

all initial velocities and step-lengths, such that the SW model asymptotically ap-

proaches the periodic trajectory (the ‘target trajectory’). In Fig. 3.7 we also show

4 We copied the basin of attraction from Fig. 4 in [75] and scaled it appropriately to match
the axes of our Fig. 3.7. The axes of the original figure in [75] are the angle and the sum of the
angle and angular-rate of the stance leg just after collision; the axes in our figure are the step-
size (a function of the angle at collision) and the angular rate at the previous midstance. The
copying and scaling was done approximately and only aims to show the qualitative result about
passive-locomotion robustness, as presented in Fig. 3.7.

93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

midstance
velocity

θ̇0

next step
size

xst

0.046 target velocity

C
_

1
xst

C
_

2
xst

C
_

3
xst

∞-step extended controllable region

of the actuated 2D IP model

basin-of-attraction
of the passive

Simplest Walking
model

(approximate)

target trajectory

zero leg tension just before next collision

Figure 3.7: Comparative robustness of passive walkers and 2D IP model. For the
(passive) Simplest Walking model [27], a stable periodic trajectory at the slope γ = 0.004
is considered. For the (actuated) 2D IP model with unbounded actuation, the midstance
velocity matching that of the Simplest-Walking-model’s periodic trajectory, is assumed
as the target. Shown are the approximate basin-of-attraction4 for the Simplest-Walking
model (the narrow v-shaped region) and the ∞-step extended controllable region C̄xst

∞

of the IP model (similar to C̄xst
∞ in Fig. 3.4b). The Simplest-Walking-model’s basin-of-

attraction is only about 2% of C̄xst
∞ in area. This illustrates poor robustness of passive

walkers, and passive-dynamics based controllers, relative to the full conceivably possi-
ble recovery ability of actively controlled robots.

the ∞-step controllable region C̄xst
∞ of the 2D IP model, with unbounded step-

size and push-off actuation, corresponding to the same target trajectory (target

velocity at midstance).

The basin-of-attraction of the passive SW model is significantly smaller than

the region C̄xst
∞ (about 0.6% of C̄xst

∞ in area). Hence the poor robustness of passive

walkers: even a small perturbation may push the robot outside of the basin-

of-attraction and make it fall. On the other hand, a lot of such perturbations

that make the passive walker fall, could otherwise be controlled with proper

actuation — the push-off and step-size actuation in the IP model. This indicates

the disadvantage, at least from the robustness perspective, of using passive-

94

dynamics based controllers, such as in [22], which aim to reproduce motions of

passive walkers on level ground.

95

CHAPTER 4

LINEAR INVERTED PENDULUM MODEL IN 2D

This Chapter is analogous to the Chapter 3, but studies a different simple model

of a biped, the Linear Inverted Pendulum (LIP) model in 2D [40, 41]. The model

is introduced in Section 2.4.2 and illustrated in Fig. 2.5b on page 29. The model

has one dynamic variable, the horizontal position xh of the hip relative to the

stance foot, and two phase coordinates, position xh and velocity ẋh. There are

two controls per each step, which define when and where to take a step: the step

size xst and step-time tst (time from the vertical position at midstance to the next

heelstrike). It is assumed that the (massless) swing leg can be instantaneously

moved into any desired position without affecting the dynamics of the stance

leg. Compared to the IP model, the LIP model does not have a preemptive push-

off; the force in the stance leg is constrained to maintain the constant height yG

of the hip above the ground.

In this Chapter we derive equations of motion and walking constraints of the

2D LIP model (Section 4.1). We then compute viable, controllable, and extended

viable and controllable regions, both for the unconstrained model and in the

case of additional constraints imposed (Section 4.2). Based on the calculation

results, we justify for the case of the 2D LIP model the ‘Viable is Controllable’

and ‘Two-step controllability’ claims stated in Section 2.3 on page 25. Section 4.3

compares the planar IP and LIP models, their dynamics and controls.

96

4.1 Equations of motion

The constant height constraint of the LIP model leads to linear ODEs governing

the motion of the system, making them easier to work with than the nonlinear

IP equations. The compressive force Fst in the stance leg, which maintains the

constant height, is always proportional to the leg’s total length. In effect, the

stance leg is a zero-rest-length compressive spring always obeying the equation

Fst = −kl, where k =
mg
yG
. (4.1)

l is the total length of the leg, m the mass at the hip, g acceleration due to gravity,

and k the spring constant. Hence, the linearity of the ODEs:

m~̈rh = k~rh + m~g, (4.2)

where ~rh = (xh, yh)T is the position vector of the hip relative to the stance foot,

and ~g = (0,−g)T . Assuming the initial conditions yh = yG = mg/k and ẏh = 0, we

get

ÿh = 0,

i.e. the hip remains at the fixed height yG at all times. Therefore, the x-

component of equation (4.2) is the only ODE governing the dynamics of the

system. We rewrite (4.2) in a non-dimensional form as

ẍh = xh, yh = 1. (4.3)

The non-dimensionalization uses the constants m, yG, and
√

m/k for the units of

mass, length, and time respectively.

In contrast with the ODE (3.1) governing the motion of the planar IP model,

equation (4.3) for the planar LIP model can be solved analytically:

xh(t) = x0 cosh(t − t0) + v0 sinh(t − t0), (4.4)

97

where x0 and v0 are the initial position and velocity of the hip, and t0 the initial

time. The above equation defines the trajectory of the robot between collisions.

The instant and location of the next collision are defined by the control pa-

rameters step-time tst and step-size xst. All ‘collisions’ are smooth in that the hip

velocity is continuous at all times (in contrast to velocity jumps at heel-strikes

in the IP model). The legs swap their roles at each collision: the (former) swing

leg becomes the (new) stance leg, and vice versa. Thus, we write the change of

the phase variables xh and ẋh at the instant of collision as

x+
h = x−h − xst, (4.5a)

ẋ+
h = ẋ−h . (4.5b)

Here superscripts − and + refer to the values just before and just after the colli-

sion respectively.

4.1.1 Walking constraints

The constraints of the IP model in Chapter 3 prevent the robot transitioning to

the flight phase. However, for the LIP model flight (i.e. running) is not possible

because of the constant-CoM-height constraint; the robot is always in the walk-

ing mode. Instead, the motion of the LIP model is restricted by the maximum

allowed length of each leg, lmax.

The length l of the stance leg is given by

l =

√
x2

h + y2
h =

√
x2

h + 1. (4.6)

Therefore, we write the maximum-leg-length constraint as

x2
h + 1 ≤ l2

max (4.7a)

98

The above inequality has to be satisfied at all times. The length of the swing

leg is only relevant at the instant just before the heel-strike, when the robot

has to take a step. The swing leg just before the heel-strike keeps its length

as it becomes the stance leg just after the heel-strike. Therefore, the leg-length

constraint for the swing leg is covered by (4.7a).

We note, that in the absence of the constraint (4.7a) (and any other constraints

restricting the legs’ extension, such as telescopic-actuator limitations or maxi-

mum allowed step duration), there are no restrictions on the duration of appli-

cation of equation (4.4). Walking (staying up), or even a single step of walking,

can be prolonged indefinitely by simply not taking a step. In this case, both the

stance leg length and hip velocity increase exponentially.

As with the 2D IP model, we only consider the motion forward:

ẋh ≥ 0. (4.7b)

We also require that the robot reaches the midstance at the end of each step. The

corresponding algebraic constraints are derived in Section 4.1.2 below. One or

more additional constraints may be imposed on the model, based on a specific

problem. Some examples of such constraints are listed in Section 2.5.1 on page

33.

4.1.2 Poincaré map

As for the IP model, we use a Poincaré section for the 2D LIP model at midstance,

when the stance leg is vertical:

Midstance: xh = 0. (4.8)

99

The dynamic state of the robot at midstance can be described by one variable,

which we choose to be the hip velocity ẋh. We are going to find the Poincaré

map of the model, i.e. how velocity ẋh changes from one midstance to another

for given control parameters (the step-size xst and step-time tst).

We use the following first integral, also called the orbital energy [41], of the

system (4.3):

H =
1
2

ẋ2
h −

1
2

x2
h.

H is the total energy of the robot, assuming xh = 0 to be the reference for the

potential energy of the spring-like leg. H is conserved between collisions:

Ḣ = ẋh ẍh − xh ẋh = (ẍh − xh)ẋh = 0.

We write conservation of H between the initial midstance and the instant just

before the collision:

v2
0 = (ẋ−h)2 − (x−h)2, (4.9a)

where v0 is the initial midstance velocity. Similarly, for the interval between just

after the collision and the next midstance:

v2
1 = (ẋ+

h)2 − (x+
h)2, (4.9b)

where v1 is the velocity at the next midstance. The position x−h just before the col-

lision is found by writing the analytical solution (4.4) at the time tst and setting

t0 = 0:

x−h = v0 sinh tst (4.10)

Finally, elimination of x−h , ẋ−h , x+
h , and ẋ+

h from the five equations (4.5), (4.9), and

(4.10) allows us to find the Poincaré map of the model:

v2
0 = v2

1 + x2
st − 2v0xst sinh tst. (4.11)

100

This equation establishes the relationship between the initial velocity v0, the

end velocity of the step v1, and the controls xst and tst used during the step.

The equations of motion and step-to-step transitions of the LIP model (both the

planar model and its 3D extension) were derived by Kajita, et al. [41, 40].

Next, we write the model’s constraints (4.7) in terms of the variables v0, v1,

xst, and tst. The maximum-leg-length constraint (4.7a) has to be checked only

just before and just after the heel-strike, when the leg is most stretched:

(x−h)2 + 1 ≤ l2
max, (x+

h)2 + 1 ≤ l2
max.

Note, that the second of the above inequalities corresponds to the leg-length

constraint for the swing leg (the stance leg just after the heel-strike is the swing

leg just before the heel-strike). Employing equation (4.10) for x−h and the collision

relation (4.5a), the inequalities become

v0 sinh tst ≤ xmax, (4.12a)

v0 sinh tst ≥ xst − xmax, (4.12b)

where xmax is the horizontal deviation of the hip from the midstance position

when the stance leg is maximally stretched (l = lmax):

xmax =

√
l2
max − 1.

We require that the robot reaches the midstance at the end of each step. This

is guaranteed by two conditions. First, the robot has to step ahead of the hip:

xst ≥ x−h . Using equation (4.10) we write this constraint as

v0 sinh tst ≤ xst. (4.12c)

Second, the robot’s speed after the collision has to be sufficiently large. Equiv-

alently, the Poincaré map (4.11) has to have a real solution with respect to the

next midstance velocity v1.

101

We consider only the motion ‘forward’ and allow only non-negative values

of the step-time tst and step-size xst:

v0 ≥ 0, (4.12d)

tst ≥ 0. (4.12e)

xst ≥ 0,

Note, that the non-negativity of the step-size (xst ≥ 0) is followed from the

stepping-ahead constraint (4.12c).

Thus, a step of our 2D LIP model is defined by three values: the initial mid-

stance velocity v0, step-size xst, and step-time tst. The velocity v1 at the next

midstance is determined by the Poincaré map (4.11). For a given v0, the controls

xst and tst have to be such that constraints (4.12) are satisfied. If at least one of

the constraints is violated, the robot fails.

4.2 Viable and controllable regions

In this section we compute the n-step viable and controllable regions Vn and Cn,

and their extended counterparts V̄n and C̄n for our 2D LIP model. The definition

and detailed description of the (extended) viable and controllable regions was

given in Chapter 2.

Pratt et al. [65, 42] found the capture regions of the LIP model, both in 2D

and 3D: all ground locations where the robot can step and come to a stop in one

or more steps. Our calculations in this section extend, for the 2D case of the LIP

model, Pratt’s results in two ways. First, we allow an arbitrary target velocity,

instead of just standing up-right assumed by capturability. Second, as opposed

102

to all controls (stepping locations) that allow a return to the target for a given

perturbed state of the robot, we also find all perturbed states for which such

return is possible, i.e. the (extended) controllable regions of the robot.

The planar LIP model has one state variable at midstance (initial hip velocity

v0) and two controls (step-time tst and step-size xst). The full extended state of the

model is three-dimensional, (v0, tst, xst), yielding three-dimensional full extended

viable and controllable regions V̄ tst ,xst
n and C̄tst ,xst

n . However, as for the 2D IP model

in Section 3.2, we extend the state space by only one control at a time, to keep

the calculations simple. We consider the two-dimensional extended regions V̄ xst
n ,

C̄xst
n , V̄ tst

n , and C̄tst
n .

We first describe all non-failed states and feasible controls of the model, i.e.

the 0-step regions V0, V̄ xst
0 , and V̄ tst

0 . In contrast to the IP model, the midstance

velocity is allowed to be arbitrarily large, because flight is not possible for the

LIP model:

V0 : v0 ≥ 0. (4.13a)

The step-size xst is limited by the maximum allowed length of the legs lmax. The

largest possible xst corresponds to the configuration of the robot when both the

stance and swing leg are maximally stretched:

V̄ xst
0 : v0 ≥ 0, 0 ≤ xst ≤ 2xmax, (4.13b)

where xmax =
√

l2
max − 1. For now, we do not put a lower bound on the step-time

tst:

V̄ tst
0 : v0 ≥ 0, tst ≥ 0. (4.13c)

Controllability of the model with the minimum allowed step-time constraint,

such as constraint (3.31b) for the planar IP model, is analyzed in Section 4.2.4.

103

The 0-step viable and extended viable regions V0, V̄ xst
0 , and V̄ tst

0 are shown

in Fig. 4.4 on page 113. The example value of the maximum leg length lmax

considered here is

lmax = 1.2 (4.14)

4.2.1 one-step controllability

The extended controllable regions for our LIP model can be computed in a simi-

lar way as for the planar IP model in Section 3.2. First, we compute the extended

1-step controllable regions C̄xst
1 and C̄tst

1 for an arbitrary target state of the model,

i.e. an arbitrary target velocity vt at midstance.

For the LIP model the regions C̄xst
1 and C̄tst

1 can be found analytically. C̄xst
1 is

all initial velocities v0 and step-sizes xst, such that the robot can, with an appro-

priate step-time tst, reach the target velocity vt at the next midstance. Hence,

C̄xst
1 is all combinations (v0, xst) that satisfy the Poincaré map equation (4.11) and

constraints (4.12) for some value of tst and the fixed next-step velocity v1 = vt.

We find the region C̄xst
1 by computing its boundaries. The boundary points

correspond to the cases when one of the constraints (4.12) is ‘active’, i.e. turns

into an equality. We use the Poincaré map (4.11) to eliminate the variable tst from

the constraint equations and write the equations of the corresponding bound-

104

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

step sizes which let the robot
reach the target in one step

C
_

1
xst

midstance
velocity

next step
size

xst

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

next step
time

tst

midstance
velocity

step-times which let the robot
reach the target in one step

C
_

1
tst

V0
all non-failed states

midstance
velocity

C1

possible to reach target
within one step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
target velocity

target velocity

target velocity

step vertically down from the hip

stance-leg length
limit is reached

swing-leg length limit is reached

zero step-tim
e

step vertically down from the hip

stance-leg length limit is reached

v0

v0

v0zero step-time

swing-leg length
limit is reached

(a) 1-step controllable
region

(b) Extended 1-step
controllable region:

step size controls

(c) Extended 1-step
controllable region:
step time controls

Figure 4.1: 1-step controllable and extended controllable regions for the 2D LIP
model. (a) The 1-step controllable region C1 is all initial velocities v0, for which the
robot can reach the target within one step. The target here is the velocity vt = 0.3 at
midstance. (b), (c) For each velocity v0, the extended 1-step controllable regions C̄xst

1
and C̄tst

1 show, respectively, all step-sizes xst and step-times tst, that let the robot reach
the target within one step. The boundary curves of C̄xst

1 and C̄tst
1 correspond to different

constraints of the model. For step sizes/step-times beyond these curves, the robot ei-
ther fails or does not reach the target. The region C1 is the projection of both C̄xst

1 and
C̄tst

1 onto the v0-axis.

105

aries:

v2
0 = v2

t + x2
st − 2xmaxxst, (4.15a)

v2
0 = v2

t − x2
st + 2xmaxxst, (4.15b)

v2
0 = v2

t − x2
st, (4.15c)

v0 = 0, (4.15d)

v2
0 = v2

t + x2
st. (4.15e)

The region C̄xst
1 is shown in Fig. 4.1b for the example target velocity

vt = 0.3. (4.16)

From the top, the region is bounded by the curves (4.15a) and (4.15b) represent-

ing the maximum leg-length constraints (4.12a) and (4.12b) respectively. For

the step-sizes and initial velocities on these curves, the robot has to maximally

extend its either stance or swing leg (and use an appropriate step-time tst) to

return to the target in one step. The bottom-left boundary of C̄xst
1 is the curve

(4.15c) representing the stepping-ahead constraint (4.12c). For the correspond-

ing points, the robot steps exactly below the hip at an appropriate time tst. Fi-

nally, the bottom-right boundary curve (4.15e) represents the non-negative step-

time constraint (4.12e) and corresponds to infinitely fast steps. The robot puts

the swing foot on the ground immediately after the initial midstance, at the lo-

cation defined by the step-size xst. For any point (v0, xst) outside the region C̄xst
1 ,

the robot either fails or is not able to reach the target in one step.

Similarly, for each initial velocity v0 the extended 1-step controllable region

C̄tst
1 shows all step-times tst, such that the robot can reach the target vt in one

step. As for the region C̄xst
1 discussed above, we find the boundaries of C̄tst

1 by

using the Poincaré map (4.11) to eliminate xst from the five constraint equations

106

(4.12). Then, we consider the cases when the constraints turn into equalities.

The resulting equations define the boundary curves of the region C̄tst
1 :

v0 sinh tst = xmax, (4.17a)

v0 cosh tst =

√
x2

max + v2
t , (4.17b)

v0 cosh tst = vt, (4.17c)

v0 = 0, (4.17d)

tst = 0. (4.17e)

The region is shown in Fig. 4.1c for the target velocity (4.16). Similarly to C̄xst
1 ,

the region C̄tst
1 is bounded from above by the maximum-leg-length boundaries

(4.17a) and (4.17b). From below, C̄tst
1 is constrained by the zero-step-time line

(4.17e) (i.e. the v0-axis) and the stepping-below-the-hip curve (4.17c). As the

initial velocity v0 approaches zero, the allowable step-times tst grow infinitely

large.

The projections of both C̄xst
1 and C̄tst

1 onto the v0-axis form the 1-step control-

lable region C1 shown in Fig. 4.1a. C1 is all initial velocities, for which there is at

least one pair of controls xst and tst such that the robot has the target velocity vt at

the next midstance. For the target velocity (4.16) the range of 1-step controllable

initial velocities is 0 < v0 ≤
√

x2
max + v2

t ≈ 0.73.

We also show examples of the 1-step regions C1, C̄xst
1 , and C̄tst

1 for target veloc-

ities vt, other than (4.16). Fig. 4.2 shows these regions for the cases vt = 0 (plots

(a), (c), (e) on the left) and vt = 0.8 (plots (b), (d), (f) on the right). In the zero-

target-velocity case, the n-step controllable regions Cn are equivalent to Koolen’s

n-step viable capture basins [42].

107

Controllability for different targets
target velocity vt = 0 target velocity vt = 0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

midstance
velocity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

v0

swing-leg length limit is reached

stance-leg length limit is reached

zero step-time

possible to reach target
within one step

C
_

1
xst

target velocity

next step
size

xst

midstance
velocity

v0

(c) 1-step controllability: step sizes

midstance
velocity

v0

next step
time

tst

possible to reach target
within one step

C
_

1
tst

stance-leg limit is reached

swing-leg length
limit is reached

(e) 1-step controllability: step-times
target velocity

V0
C1

possible to reach target
within one step

all non-failed states

target velocity

(a) 1-step controllable region C1

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

midstance
velocity

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2

v0

next step
size

xst

midstance
velocity

v0

(d) 1-step controllability: step sizes

midstance
velocity

v0

next step
time

tst

possible to reach target
within one step

C
_

1
tst

(f) 1-step controllability: step-times

V0
C1

possible to reach target
within one step

all non-failed states

(b) 1-step controllable region C1

possible to reach target
within one step

C
_

1
xst

swing-leg length lim
it is reached

sta
nce

-le
g length lim

it is

 re
ached

zero step-tim
e

step vertically down from the hip

swing-leg length limit is reached stance-leg length limit is reachedstep vertically down
from the hip

target velocity

target velocity

target velocity

Figure 4.2: 1-step controllability of the 2D LIP model for different targets. This figure
is analogous to the Fig. 4.1 on page 105, but for different target velocities vt. The graphs
(a), (c), (e) assume vt = 0, while the graphs (b), (d), (f) consider vt = 0.8. In the case
vt = 0, the 1-step controllable region C1 is equivalent to Koolen’s 1-step viable-capture
basin [42]. Fig. 4.1, where the target is vt = 0.3, would be a column of figures between
the two columns on this Fig. 4.2.

4.2.2 n-step and∞-step controllability

The extended n-step controllable regions C̄xst
n and C̄tst

n are all combinations of

the initial velocity v0 and the next-step control (step-size xst and step-time tst

correspondingly), such that the robot can reach a given target velocity vt in n or

fewer steps.

108

0 0.3 0.5 1.51
0

0.5

1

1.5

midstance
velocity

next step
size

xst

0 0.3 0.5 1 1.5
0

1

2

3

4

5

next step
time

tst

midstance
velocity

midstance
velocity

target velocity

target velocity

v0

v0

v0

stance-leg length limit is reached

both legs reach the length limit

C
_

1
xst

C
_

1
tst

swing-leg length limit is reached

step vertically down
from the hip

C
_

2
tst

C
_

3
tst C

_

4
tst C

_

5
tst

C
_

2
tst

C
_

2
xst

C
_

3
xst

C
_

4
xst C

_

5
xst

step vertically down from the hip

stance-leg length limit

zero step-tim
e

ze
ro

 st
ep-ti

me

ze
ro

 s
te

p-ti
m

e

swing-leg legth lim
it

swing-leg legth lim
it

swing-leg legth lim
it

possible to reach target
in one step

 possible to
 reach target
within 2 steps

 possible to
 reach target
within 3 steps

C
_

∞
xst possible to

reach target

C
_

∞
tst possible to

reach target

possible to reach
target in one step

possible to reach
target within 2 steps

C1
C2

C3

0 0.3 0.5 1.51

C4

C∞

possible to reach target

target velocitypossible to reach target
in one step

possible to reach target
within 2 steps

possible to reach target
within 3 steps

(a) Controllable regions

(b) Extended controllable
regions: step size

controls

(c) Extended controllable
regions: step time

controls

Figure 4.3: n-step controllability of the 2D LIP model. (a) The n-step controllable
region Cn is all initial velocities v0, for which the robot can reach the target velocity vt
in n or fewer steps. Here vt = 0.3. (b), (c) For each v0, the extended n-step controllable
regions C̄xst

n and C̄tst
n show, respectively, where and when the robot can take the next step

(i.e. all step sizes xst and step-times tst), such that the target is reached in n or fewer steps
total. The regions Cn, C̄xst

n , and C̄tst
n form sequences of nested regions, which approach

the∞-step regions C∞, C̄xst
∞ , and C̄tst

∞ (shown by their boundary) correspondingly. These
are, respectively, all velocities v0 and combinations (v0, xst) and (v0, tst) of velocities and
controls such that the target can be reached or approached asymptotically. Each Cn is
the projection of both C̄xst

n and C̄tst
n onto the v0-axis.

109

As for the IP model in Section 3.2.3, we compute the regions C̄xst
n and C̄tst

n

numerically, following the procedure described in Section 2.7.4 on page 58. The

regions are displayed for several values of n in Figs. 4.3b and 4.3c respectively,

assuming the target velocity (4.16). The projections of both C̄xst
n and C̄tst

n onto the

velocity axis are the n-step controllable regions Cn shown in Fig. 4.3a. For each

n, Cn includes all initial velocities that allow the robot to reach the target vt in

at most n steps, given appropriate feasible controls. The 1-step regions C1, C̄xst
1 ,

and C̄tst
1 are the same as those presented on Fig. 4.1.

The controllable and extended controllable regions are nested: Cn ⊂ Cn+1,

C̄xst
n ⊂ C̄xst

n+1, and C̄tst
n ⊂ C̄tst

n+1. As n increases, the regions grow indefinitely in

the v0 direction. In the limit n→∞, they approach the ∞-step controllable and

extended controllable regions C∞, C̄xst
∞ , and C̄tst

∞ respectively. C∞ is all velocities

v0 from which a return to the target is possible; such are all positive velocities:

C∞ : v0 > 0. (4.18a)

For each v0, the extended region C̄xst
∞ shows all sizes xst of the first step which

allow a return to the target. C̄xst
∞ is only bounded from above by the largest

step-size the robot can take for a given maximum leg-length lmax:

C̄xst
∞ : v0 > 0, 0 ≤ xst ≤ 2xmax ≈ 1.33. (4.18b)

The region C̄tst
∞ considers all ∞-step controllable step-times tst. As shown in

Fig. 4.3c, C̄tst
∞ is bounded by the two axes (constraints (4.12d) and (4.12e)) and

the curve (4.17a), which corresponds to the stance-leg reaching its length limit

lmax:

C̄tst
∞ : v0 > 0, 0 ≤ tst ≤ sinh−1 xmax

v0
. (4.18c)

The controllable regions presented in Fig. 4.3 were numerically computed

assuming the target velocity (4.16). However, our calculations for other target

110

velocities reveal that the ∞-step regions C∞, C̄xst
∞ , and C̄tst

∞ remain the same for

any vt. In Section 4.2.3 below we show that these regions are (almost) equal to

the∞-step viable regions V∞, V̄ xst
∞ , and V̄ tst

∞ correspondingly.

In contrast to the IP model (see Fig. 3.4 on page 82), the ∞-step controllable

and extended controllable regions are unbounded for our LIP model. This is be-

cause flying is impossible in the LIP model and steps are allowed to be infinitely

fast. The regions become bounded if the step-time tst is constrained by a min-

imum allowed value — see Section 4.2.4. One consequence of the unbounded

∞-step regions is that they are not close to the corresponding (bounded) 2-step

controllable and extended controllable regions (C2 is not close to C∞, C̄xst
2 to C̄xst

∞ ,

and C̄tst
2 to C̄tst

∞) — for most initial velocities, two steps are not enough to return

to the target. Hence, the simple LIP model is one example where the ‘Two-step

controllability’ claim (Section 2.3.2) is not valid — in contrast to the planar IP

model for which the claim is true for most target velocities.

Notice that more than two steps are required to return to the target only

for large initial velocities, i.e. those outside C2, v0 & 0.98 (approximately 3 m/s

for a biped with one-meter-long legs). Such velocities are beyond the normal

range of walking of most bipeds; for example, for the IP model viable midstance

velocities of walking are θ̇0 ≤ 1 (see Section 3.2.1). If we consider only ‘not-

too-large’ velocities (e.g. v0 ≤ 1, matching the IP model range), the ‘Two-step

controllability’ claim becomes valid for our LIP model. The claim is also justified

for the LIP model if the minimum-step-time constraint is imposed on the model,

as discussed in Section 4.2.4 below.

111

4.2.3 Viable and extended viable regions

The viable and extended viable regions Vn, V̄ xst
n , and V̄ tst

n are the sets of all veloci-

ties and next-step controls, such that the robot can take n or more steps and not

fail.

For any n, the extended n-step viable region V̄ xst
n includes all points in the

extended∞-step controllable region C̄xst
∞ for any target that allows periodic mo-

tion. The target (4.16) considered above does allow periodic motion: for exam-

ple, v0 = v1 = vt and xst = xmax satisfy the Poincaré map (4.11) and constraints

(4.12). Therefore, the region V̄ xst
n includes all of C̄xst

∞ : C̄xst
∞ ⊂ V̄ xst

n . On the other

hand, V̄ xst
n is always a subset of the 0-step region V̄ xst

0 : V̄ xst
n ⊂ V̄ xst

0 . According to

(4.18b) and (4.13b) the regions C̄xst
∞ and V̄ xst

0 are the same, except for the boundary

points v0 = 0. Hence, for the LIP model, all extended n-step viable regions V̄ xst
n

are equal for n≥ 0:

V̄ xst
0 = V̄ xst

n = V̄ xst
∞ : v0 ≥ 0, 0 ≤ xst ≤ 2xmax (4.19a)

We include the points v0 = 0 in all V̄ xst
n , because the robot formally can ‘step in

place’ (v0 = v1 = 0, xst = 0, tst = 0) while taking an arbitrarily large number of

steps. The viable regions V̄ xst
n are shown in Fig. 4.4b.

We use a similar reasoning to find the regions V̄ tst
n of all n-step viable step-

times tst. For any n, V̄ tst
n includes all points in the region C̄tst

∞ which is shown

in Fig. 4.3b and is defined by (4.18c). That is, V̄ tst
n contains all points below the

curve (4.17a), the top boundary curve of C̄tst
∞ . Notice, that the curve (4.17a) (i.e.

the stance-leg length limit constraint) does not depend on the target velocity vt

and the step-size xst. Therefore, for any point (v0, tst) above this curve the robot

fails; all such points are outside of the region V̄ tst
n for any n≥ 1. Thus, all V̄ tst

n for

112

0 0.5 1.51
0

0.5

1

1.5

midstance
velocity

next step
size

xst

0 0.5 1 1.5
0

1

2

3

4

5

next step
time

tst

midstance
velocity

midstance
velocity

(a) Viable regions

(b) Extended viable
regions: step size

controls

(c) Extended viable
regions: step time

controls

v0

v0

v0

stance-leg length limit is reached

both legs reach the length limit

all non-failed speeds
and allowed step-sizes

0 0.5 1.51

V
_

0
xst = V

_

n
xst = V

_

∞
xst (for any n≥1)

possible to take n
steps and not fail

possible to step
inde�nitely

V
_

n
tst = V

_

∞
tst

(for any n≥1)

V
_

0
tst

 \ V
_

1
tst

impossible to
stay up even

one step

possible to step
inde�nitely

possible to take n
steps and not fail

V0 = Vn = V∞

all non-failed
speeds

possible to
take n steps possible to

never fail

Figure 4.4: Viable and extended viable regions of the 2D LIP model. (a) The n-step
viable region Vn is all initial velocities v0, for which the robot can, with appropriate con-
trols, take at least n steps and not fail. (b), (c) For each v0, the extended n-step viable
regions V̄ xst

n and V̄ tst
n show, respectively, all step-sizes xst and step-times tst of the next

step, which let the robot take n or more steps and not fail. Each Vn is the projection of
both V̄ xst

n and V̄ tst
n onto the v0-axis. For the 2D LIP model, the regions Vn are identical

for n≥ 0; so are, respectively, all V̄ xst
n for n≥ 0 and all V̄ tst

n for n≥ 1. The ∞-step regions
V∞, V̄ xst

∞ , and V̄ tst
∞ are shown by their boundary. These are, correspondingly, all veloc-

ities v0 and combinations (v0, xst) and (v0, tst) of velocities and controls for which the
robot is able to step indefinitely. The 0-step regions V0, V̄ xst

0 , V̄ tst
0 represent all non-failed

velocities and allowed controls.

113

n≥ 1 are the same as C̄tst
∞ (but for the points v0 = 0):

V̄ tst
1 = V̄ tst

n = V̄ tst
∞ : v0 ≥ 0, 0 ≤ tst ≤ sinh−1 xmax

v0
. (4.19b)

The extended n-step viable regions V̄ tst
n are shown in Fig. 4.4c.

The n-step viable region Vn is all initial midstance velocities that allow the

robot to take n or more steps and not fail. We find the regions Vn as the pro-

jections of both the V̄ xst
n and V̄ tst

n regions onto the velocity axis. As shown in

Fig. 4.4a, all Vn are the same:

V0 = Vn = V∞ : v0 ≥ 0. (4.19c)

As established above, the (extended) ∞-step viable and (extended) ∞-step

controllable regions of the 2D LIP model are equal, but for some boundary

points:

V∞ ≈ C∞, V̄ xst
∞ ≈ C̄xst

∞ , V̄ tst
∞ ≈ C̄tst

∞ . (4.20)

This confirms, for the 2D LIP case, the ‘Viable is Controllable’ claim in Sec-

tion 2.3.1. In most cases, when the robot is able to avoid failing, it is also able to

reach any given target.

4.2.4 Swing time limitation

Now we consider the LIP model with restricted step-time. We require the con-

trol parameter step-time tst (time from midstance to heel-strike) to be not smaller

than a given fixed value:

tst ≥ tst,min > 0. (4.21)

The minimum step-time constraint is a proxy for leg-swinging actuator limita-

tions of the real robot.

114

0 0.3 0.5 1.51
0

0.5

1

1.5

midstance
velocity

next step
size

xst

0 0.3 0.5 1 1.5
0

1

2

3

4

5

next step
time

tst

midstance
velocity

midstance
velocity

target velocity

v0

v0

v0C
_

3
tst C

_

4
tst C

_

5
tstC

_

2
tstC

_

1
tstC

_

2
tst

C
_

2
xst

C
_

3
xst

C
_

4
xst

C
_

5
xst

C1

C2

0 0.3 0.5 1.51

C∞

possible to reach target

target velocitypossible to reach target
in one step

possible to reach target
within 2 steps

(a) Controllable regions

(b) Extended controllable
regions: step size

controls

(c) Extended controllable
regions: step time

controls

stance-leg length limit

both legs reach the length limit

swing-leg length limit

step vertically down at min. allowed step-timem
in. a

llo
wed st

ep-ti
me

m
in

. a
llo

w
ed

 s
te

p-ti
m

e
m

in
. a

llo
w

ed
 s

te
p-ti

m
eC

_

1
xst C

_

2
xst C

_

3
xst C

_

4
xst

possible to reach
target in one step

target velocitystep vertically down
from the hip

step at min. allowed
step-time

+
max. viable speed at

next midstance

min. allowed step-time

stance-leg length limit is reached

step vertically down
from the hip

swing-leg length limit is reached

C
_

1
tstC

_

2
tst

C
_

2
tst

C
_

3
tst

C
_

∞
tst possible to

reach target

C
_

∞
xst possible to

reach target

max. viable speed
(stance-leg reaches
length limit at min.
allowed step-time)

in dim color are
extended controllable regions
for the unconstrained model

C3

V0
all non-failed states

Figure 4.5: Controllability of the 2D LIP model with constrained swing time. This
figure is analogous to Fig. 4.3 on page 109, but assumes a fixed lower bound on the
allowed step-time: tst ≥ tst,min. Constrained step-time tst (time from midstance to heel-
strike) is a proxy for leg-swinging actuator limitations of the robot. Here tst,min = 0.5.
The∞-step controllable regions C∞, C̄xst

∞ , and C̄tst
∞ are the same (but for boundary points)

as the ∞-step viable regions V∞, V̄ xst
∞ , and V̄ tst

∞ respectively (Fig. 4.6). The extended con-
trollable regions for the unconstrained LIP model (Fig. 4.3) are shown here with light
shading for comparison.

115

We numerically compute the extended n-step controllable regions C̄xst
n and

C̄tst
n for the 2D LIP model constrained by (4.21). The computation methods are

similar to those for the constrained 2D IP model (Section 3.2.5). The regions are

displayed in Figs. 4.5b and 4.5c respectively. The smallest allowed step-time

tst,min (dimensionless) used for numerical investigation is the same as for the 2D

IP model in Section 3.2.5:

tst,min = 0.5. (4.22)

The extended controllable regions for the unconstrained LIP model (Fig. 4.3)

are shown with light shading. Fig. 4.5a shows the n-step controllable regions Cn

for the constrained LIP model: Cn are projections of both C̄xst
n and C̄tst

n onto the

velocity axis.

The minimum step-time constraint (4.21) renders the∞-step controllable re-

gions C∞, C̄xst
∞ , and C̄tst

∞ bounded. The upper bound of C∞, the right-most point

of all∞-step regions, is

v0 =
xmax

sinh tst,min
≈ 1.27. (4.23)

This initial velocity is such that the stance leg reaches the length limit lmax at the

time tst,min (hence, the above formula is equivalent to (4.17a) with tst = tst,min).

For initial velocities greater than (4.23), the stance-leg length exceeds lmax before

the robot is allowed to take a step, i.e. the robot fails. Hence, (4.23) is also

the largest (one-step) viable velocity, as shown in Fig. 4.6. The points on the

right boundary curve of C̄xst
∞ are such that the robot steps at the earliest allowed

time tst,min and reaches the velocity (4.23) at the next midstance. For the points

just to the right of this curve, it is possible to take one step, but impossible to

avoid a failure during the second step. That is, all such points are in V̄ xst
1 , but

outside of V̄ xst
2 , as shown in Fig. 4.6b. On the other hand, V̄ xst

2 is the same (but for

some boundary points) as C̄xst
∞ . Therefore, by the arguments similar to those in

116

0 0.5 1.51
0

0.5

1

1.5

midstance
velocity

next step
size

xst

0 0.5 1 1.5
0

1

2

3

4

5

next step
time

tst

midstance
velocity

midstance
velocity

v0

v0

v0

0 0.5 1.51

both legs reach the length limit

step vertically down at min. allowed step-time

min. allowed step-time

stance-leg length limit is reached

max. viable speed
(stance-leg reaches
length limit at min.
allowed step-time)

V0
all non-failed states

V
_

n
xst = V

_

∞
xst for n ≥ 2

possible to take n
steps and not fail

impossible to stay up
even one step

failure after
one step

V
_

n
tst = V

_

∞
tst

for any n≥1

possible to take n
steps and not fail

possible to step
inde�nitely

impossible to stay up
even one step

V
_

0
tst

 \ V
_

1
tst

V
_

0
xst

 \ V
_

1
xst

+ max. viable speed at
next midstance

step at min. allowed
step-time

V_ 1
x st \ V

_ 2
x st

possible to step
inde�nitely

Vn = V∞

possible to
take n steps

possible to
never fail

(a) Viable regions

(b) Extended viable
regions: step size

controls

(c) Extended viable
regions: step time

controls

for n≥1

Figure 4.6: Viability of the 2D LIP model with constrained swing time. This figure
is analogous to Fig. 4.4 on page 113, but assumes a fixed lower bound on the allowed
step-time: tst ≥ tst,min. Constrained step-time tst (time from midstance to heel-strike) is
a proxy for leg-swinging actuator limitations of the robot. Here tst,min = 0.5. For the
constrained LIP model V1 = V∞: if it is possible to take one step, it is possible to step
indefinitely. The∞-step viable regions V∞, V̄ xst

∞ , and V̄ tst
∞ are the same (but for boundary

points) as the∞-step controllable regions C∞, C̄xst
∞ , and C̄tst

∞ (Fig. 4.5) respectively.

117

Section 4.2.3, V̄ xst
n = V̄ xst

∞ ≈ C̄xst
∞ for any n≥ 2. Similarly, we have V̄ tst

n = V̄ tst
∞ ≈ C̄tst

∞

and Vn = V∞ ≈ C∞ for n≥ 1. Thus, we confirm, for the case of the 2D LIP model

with constrained leg-swinging, the ‘Viable is Controllable’ claim in Section 2.3.1:

in most cases, when it is possible to avoid a failure, it is also possible to reach

any given target.1

The largest two-step controllable velocity is v0 ≈ 0.82 (∼ 2.6 m/s for a biped

with one-meter-long legs), making the two-step controllable region C2 about

65% of C∞. Following discussion in Section 4.2.2, we say that more than two

steps are required to return to the target only for ‘large’ velocities. For most

(82%) velocities within the normal walking range (e.g. v0 ≤ 1, matching the

walking range of the IP model, Section 3.2.1), a two-step recovery is possible,

justifying the ‘Two-step controllability’ claim (Section 2.3.2) for the LIP model

with constrained step-time.

4.3 IP vs. LIP

We considered the simple IP (Chapter 3) and LIP (Chapter 4) models of walking,

both in 2D, and described their dynamics, viability, and controllability proper-

ties. Both models are often employed to study and control locomotion of walk-

ing robots [58, 40, 65, 43, 36, 44, 96, 82, 84]. In this section we compare the two

models, based on their viability and controllability. We hypothesize that simi-

lar viability and controllability properties of the models — for example, if the

respective extended controllable regions of the models are ‘close’ — may sug-

gest that there is no strong advantage in using either model to control the CoM

1 Our numerical calculations confirm that the (extended) ∞-step controllable regions in
Fig. 4.5 remain the same for target velocities vt other than (4.16).

118

motion of the robot. On the other hand, significant differences in the extended

controllable regions may point out that one model is more suitable than the

other for certain types of motion (e.g. fast walking) or robots.

Both the planar IP and LIP models have one-dimensional midstance and two

control parameters per step. The midstance can be described by the same vari-

able for both models: the velocity of the hip v0. One of the controls, the step-size

xst, is also equivalent in the two models. However, the second control parame-

ters do not match: the push-off p in the IP and the step-time tst in the LIP model.

Therefore, we only compare the step-size controllability of the models, that is

we compare the extended regions C̄xst
n . We also discuss the relationship between

the push-off and step-time controls in Section 4.3.2 below. In particular, we find

that the push-off is equivalent to the step-time in the small-step approximation

of the models’ dynamics.

4.3.1 Step-size controls

The extended n-step controllable regions C̄xst
n of the IP and LIP models with ac-

tuator limitations were described in Sections 3.2.5 and 4.2.4 correspondingly.

To compare the regions C̄xst
n for the two models, we have to match the models’

constraints (actuator limitations). We use the minimum-allowed-step-time con-

straint (4.21) (equivalent to (3.31b) for the IP), with tst,min = 0.5 for both models.

The maximum-leg-length constraint (4.7a) of the LIP model restricts the step-

size xst to be at most xmax = 2
√

l2
max − 1 ≈ 1.33. We impose on the IP model

the maximum-step-size constraint xst ≤ xmax with the largest allowed step xmax as

above. We do not bound the maximum allowed push-off impulse p in the IP

119

0 0.3 0.5 1.51
0

0.5

1

1.5

midstance
velocity

next step
size

xst

midstance
velocity

v0

v0

C1, lip

C2, lip

0 0.3 0.5 1.51

C∞, lip
possible to reach target

target velocitypossible to reach target
in one step

possible to reach target
within 2 steps

target velocity

V0, lip
all non-failed states

of the IP model

of the IP model

of the LIP model of the LIP model

of the LIP model

midstance
velocity

v0

C1, ip

0 0.3 0.5 1.51
target velocitypossible to reach target

in one step

possible to reach target
within 2 steps

V0, ip

all non-failed states
C2, ip = C∞, ip

possible to reach target (a) Controllable regions
of the 2D IP model

(c) Extended controllable
regions of the 2D IP and

LIP models

(b) Controllable regions
of the 2D LIP model

C
_

1, ip
xst

C
_

2, ip = C
_

∞, ip
xstxst

C
_

1, lip
xst

C
_

2, lip
xst

C
_

∞, lip
xst

step vertically down at min. allowed step-time
min.

allowed

 step-tim
e

max. allowed step-size

no-�ight const raint

Figure 4.7: Comparison of the 2D IP and LIP model controllability. (a), (b) The n-
step controllable regions Cn, ip of the 2D IP and Cn, lip of the 2D LIP model. For both
models equivalent constraints are used on the minimum allowed swing-time and the
maximum allowed step-size. (c) The extended n-step controllable regions C̄xst

n, ip of the
IP (filled regions) and C̄xst

n, lip of the LIP model (shown by the boundaries) contrasted to
each other. One-step controllability, C̄xst

1, ip vs. C̄xst
1, lip: the LIP has more one-step step-size

controls for smaller-than-the-nominal velocities, but the IP can recover from a larger
range of velocities in one step. ∞-step controllability, C̄xst

∞, ip vs. C̄xst
∞, lip: the LIP allows

smaller steps and can recover (although in many steps) from ∼ 50% larger velocities.
The regions Cn, ip and C̄xst

n, ip are similar to those in Fig. 3.6 (page 90); Cn, lip and C̄xst
n, lip are

equivalent to those in Fig. 4.5.

model, because there is no impulsive forces (hence, no matching constraint) in

the LIP model.

The extended regions C̄xst
n of both the IP and LIP models with the discussed

constraints, which we denote here as C̄xst
n, ip and C̄xst

n, lip respectively, are shown in

120

Fig. 4.7c. The target velocity is vt = 0.3. The filled areas represent C̄xst
1, ip and

C̄xst
2, ip = C̄xst

∞, ip; the regions C̄xst
n, lip for n≥ 1 are shown by their boundaries and are

copies of the regions C̄xst
n in Fig. 4.5b. The projections of the extended control-

lable regions onto the velocity axis are the controllable regions Cn, ip and Cn, lip

shown in Figs. 4.7a and 4.7b respectively.

First, we look at the one-step controllability of the models, i.e. full recoveries

from perturbations in one step. Comparing the regions C̄xst
1, ip and C̄xst

1, lip (Fig. 4.7c)

we see two major differences. The LIP model has more recovery options (one-

step dead-beat step-size controls) for velocities smaller than the nominal vt. The

no-flight restriction (the no-flight-after-push-off constraint (3.15a)) does not al-

low the IP model to speed up enough with small steps. On the other hand, C̄xst
1, ip

extends farther to the right than C̄xst
1, lip — more larger-than-the-nominal veloci-

ties are one-step controllable for the IP than for the LIP model. The IP model is

better at dissipating energy from the system, due to collision impacts with the

ground.

Considering the ∞-step controllability, the LIP always outperforms the IP

model: C̄xst
∞, ip is a strict subset of C̄xst

∞, lip. As a result of the flight impossibility, the

LIP model is able to recover from about 50% larger velocities, compared to the

IP. However, for all velocities that are not ∞-step controllable by the IP model

(velocities outside C∞, ip, v0 & 0.84): 1) the LIP requires several (more than two)

steps to return to the target; 2) all such velocities are outside the normal walking

range of bipeds. We also note, that the LIP model allows taking smaller steps,

given a minimum allowed step-time. This is because the IP, in contrast to the

LIP, has a fixed leg length: at the instant when the robot takes a step, the swing

leg has to be placed on the ground at the horizontal distance l sin θsw in front of

121

the hip (as defined by the fixed leg length l and the collision angle θsw). In the

LIP model the swing foot is allowed to be placed directly below the hip.

Thus, the simple IP and LIP models of a biped have non-negligible differ-

ences in the step-size controllability and cannot be used as totally equivalent

in a high-level controller design of a robot. One may choose one or the other

model, based on the robot’s specifics or the considered locomotion tasks of the

robot. For example, the LIP model may be a better fit for fast walking and for

walking with small steps. In Chapter 6 we use the IP model to design a high-

level controller for the Cornell Ranger robot. The IP model better transmits the

importance of collisions in Ranger’s walk and the (almost) constant length of

Ranger’s legs.

The numerical experiments (not shown here) indicate that the comparative

results presented in Fig. 4.7 remain qualitatively similar for target velocities

other than vt = 0.3.

4.3.2 Small steps: push-off in the IP is step-time in the LIP

The preemptive push-off in the simple IP model supplies energy to the system

to compensate for collisional losses. In the LIP model the ‘collisions’ are smooth

and there is no impulsive forces. Nevertheless, we draw the following analogy

between the IP push-off impulse p and the LIP stepping time tst.

In the LIP model, the robot speeds up from the initial midstance until the

heel-strike and slows down from the heel-strike until the next midstance. The

instant of the heel-strike, i.e. the step-time tst, determines the ratio of the

122

speeding-up to slowing-down. Larger tst means larger increase in the kinetic

energy before the heel-strike and smaller kinetic-energy decrease after the heel-

strike. Similarly, a larger push-off in the IP model means more energy input

just before the collision and less energy dissipated due to the ground impact.

This way, the step-time tst and the push-off p play similar roles in the LIP and IP

models, correspondingly.

The connection between tst and p is more explicit in the small-step approxi-

mation of the models’ dynamics. Consider the Poincaré map (3.14) of the 2D IP

model (page 70). Using relation (3.3) between the step-size xst and the collision

angle θsw we write the Poincaré map as√
2 − 2 cos θsw + θ̇2

1 = p xst cos θsw + cos 2θsw

√
2 − 2 cos θsw + θ̇2

0.

Assuming small angles θsw (equivalently, small step-sizes), the above equation

is approximated by

θ̇1 ≈ θ̇0 + p xst, (4.24)

where θ̇0 and θ̇1 are velocities at the initial and next midstance respectively. For

the 2D LIP model, we first solve the Poincaré map (4.11) of the model (page 100)

with respect to the next-midstance velocity v1:

v1 =

√
v2

0 − x2
st + 2v0xst sinh tst.

With the small-step assumption (small xst), we write the approximate equation:

v1 ≈ v0 + sinh tst xst. (4.25)

This equation can be further simplified, if we additionally assume small step-

times tst (thus excluding initial velocities v0 close to zero):

v1 ≈ v0 + tst xst. (4.26)

123

Equations (4.24) for the IP model and (4.26) for the LIP model are the same,

but for the swap of the push-off p with step-time tst. Therefore, we say that for

small (and fast) steps, the push-off in the IP model is equivalent to the step-time in

the LIP model. Without the fast-step assumption, the push-off p is equivalent to

sinh tst, as shown by equation (4.25).

In the dimensional form equations (4.24) and (4.26) become

l ˜̇θ1 ≈ l ˜̇θ0 +
1

ml
p̃ x̃st,

ṽ1 ≈ ṽ0 +
g
yG

t̃st x̃st,

where ˜ signifies a dimensional variable, l and m are the fixed leg length and the

hip mass in the IP model, yG the fixed height of the hip in the LIP model, and g

the acceleration due to gravity. The equivalence between the IP push-off p̃ and

the LIP step-time t̃st becomes scaled by the factor mgl/yG:

p̃ ∼
mgl
yG

t̃st. (4.27)

124

CHAPTER 5

TWO STEPS IS ALMOST EVERYTHING

When a robot deviates from its preferred trajectory — due to an external dis-

turbance, sensor noise, or perhaps to avoid an obstacle — it may have to take

several steps to return back to the original trajectory, if a return is possible at

all. The ‘Two-step controllability’ claim in Section 2.3.2 on page 26 suggests that

in most cases, when full recovery is possible, it is possible to recover within

two steps. That is, for most bipeds and most targets (nominal trajectories), two-

step controllability is almost equivalent to ∞-step controllability. This claim is

a slight generalization of Koolen et al.’s hypothesis [42] where, in contrast to

an arbitrary target in our claim, the goal of coming to a full stop is assumed.

Koolen hypothesizes that most locomotion of 3D bipedal robots, demonstrated

to date, is such that at any instant the robot is able to come to a stop within two

steps. Koolen also argues that in most cases humans are able to come to a stop

by taking at most three steps.

In this chapter we support the ‘Two-step controllability’ claim in three ways.

In Section 5.1 we justify the claim for two simple models of walking: the 2D In-

verted Pendulum (IP, see Chapter 3) and 2D Linear Inverted Pendulum model

(LIP, Chapter 4). In Section 5.2 we give examples of literature on control of

legged robots, where the controls are either intentionally two-step horizon or

show two-step recovery for considered disturbances. Section 5.3 overviews

studies on human subjects (e.g. treadmill experiments) that support the ‘Two-

step controllability’ claim. In Section 5.4 we discuss a counting argument which

may help establish the possibility of two-step control strategies. We conclude

the chapter in Section 5.5.

125

5.1 Simple models

Controllability of the simple planar IP and LIP models was studied in Chap-

ters 3 and 4 respectively. For both models, the n-step controllable regions Cn

show all perturbed velocities, such that a return of the robot to the nominal tra-

jectory (the target) is possible within n steps. The corresponding controls u that

allow an n-step recovery are shown by the extended n-step controllable regions

C̄u
n. Here we compare the 2-step with∞-step controllable and extended control-

lable regions for both the IP and LIP models.

Fig. 3.4 on page 82 displays the regions Cn, C̄xst
n (step-size controls), and C̄p

n

(push-off controls) of the 2D IP model with unconstrained actuation (arbitrarily

large push-offs p and infinitely small step-times tst are allowed), assuming the

target velocity θ̇t = 0.3. The two-step region C2 is approximately 0 < θ̇0 . 0.95,

while C∞ includes all velocities 0 < θ̇0 < 1. That is, about 95% of∞-step control-

lable states are also two-step controllable. A similar relation is valid for controls

of the robot: the extended regions C̄xst
2 and C̄p

2 cover about 95% and 97% in area

of, respectively, C̄xst
∞ and C̄p

∞. A large range of available one- or two-step step-size

controls may be important, if allowed stepping locations are constrained.

Limited actuation of the IP model does not qualitatively change the relation

between the two-step and ∞-step regions. Fig. 3.6 on page 90 shows control-

lability of the model assuming the maximum push-off and minimum swing-

time constraints. All ∞-step controllable velocities are two-step controllable:

C2 = C∞. The extended regions C̄xst
2 and C̄p

2 cover, respectively, 82% of C̄xst
∞ and

90% of C̄p
∞.

The two-step controllability result remains valid for most target speeds of

126

the IP model. Exceptional cases include large velocities (say, θ̇t & 0.8) and over-

restrictive actuation limits, e.g. ‘small’ maximum allowed push-off. In such

cases the no-fly constraint and the push-off limitation do not allow the robot to

gain speed fast — see examples in Appendix C.4. Notice, that velocities θ̇t > 0.8

are beyond the normal walking range of bipeds — running is more energetically

preferential for large velocities [77, 80, 53, 1].

Thus, we conclude that the ‘Two-step controllability’ claim holds true (for

practical purposes) for the planar IP model: the robot can reach any given target

in two steps in most cases, when it can reach it at all.

We can make almost the same conclusion about the planar LIP model. In the

case of no actuation constraints (Fig. 4.3 on page 109), the ∞-step regions C∞,

C̄xst
∞ , and C̄tst

∞ are unbounded on one side, but the two-step regions C2, C̄xst
2 , and

C̄tst
2 are finite. The robot can always recover from an arbitrarily large velocity, be-

cause flight is impossible for the LIP model and infinitely fast steps are allowed

(in the absence of the minimum step-time constraint). However, if we consider

only typical-real-walking-range velocities (say, v0 < 0.8 as in the IP discussion

above — the range of human walking speeds), the two-step controllability is

close to the ∞-step controllability. Numerical calculations (not presented here)

show that the ‘Two-step controllability’ claim is valid for any target speed less

than, say, 0.8. Limiting the actuation of the LIP model (minimum step-time con-

straint) does not qualitatively change the relationship between the two-step and

∞-step controllability, as shown in Fig. 4.5 on page 115.

Koolen et al. [42] compute the n-step capture regions for the 3D LIP model

and its two extensions: the LIP with finite-sized feet and LIP with both finite-

sized feet and a flywheel. The capture regions are equivalent to slices, along a

127

given initial state, of the extended controllable regions for the zero target veloc-

ity (see Section 2.6.5). Koolen et al.’s considered initial state’s velocity is about

0.76 (non-dimensional) — a rather large velocity for walking. For all three of

their models, the two-step capture region is non-empty, i.e. the considered ini-

tial state is two-step capturable (two-step controllable for a standing-still target,

in our language). For the simple LIP model, the two-step region is about 50% of

the∞-step capture region. For the two extensions (finite-size feet and flywheels)

of the LIP model, the two-step regions cover, respectively, about 70% and 80%

of the∞-step regions.

5.2 Two-step controls in the robotics community

Two-step control strategies have been used to generate walking motions of

robots [46, 83]. Lim et al. [46] use two-step receding horizon control with the

capturability constraint, i.e. the robot has to come to a stop at the end of each

planned two-step trajectory. In the animation world, van de Panne [83] gener-

ates the optimal (supposedly most physically realistic) motion of a character for

a sequence of desired footstep locations provided a priori. Van de Panne finds

two-step horizon control is found to be sufficient to produce a realistic anima-

tion.

Other research groups do not intentionally consider the two-step horizon,

but instead discover that planning two or three steps ahead is sufficient for their

models [14, 57, 15]. Nishiwaki et al. [57] study the problem of online generation

of walking trajectories (of the robot’s links) based on a given ZMP path. Each

trajectory is generated as a solution of a Boundary-Value Problem (BVP) and

128

plans two, three, or more steps ahead, trying to satisfy several constraints (such

as initial and final conditions, and following of the given ZMP path). Nishi-

waki finds that planning more than three steps ahead negligibly improves the

generated trajectories (their smoothness and errors in meeting the constraints).

Two-step control strategies were considered in the analysis of the Spring-

Loaded Inverted Pendulum (SLIP) model, a simple model of hopping and run-

ning [68, 12, 28]. The SLIP model has a point-mass body and a massless spring

(the leg) attached to it. The controls of the model for each step are the position

of the spring-like leg at touch-down (transition from flight to stance) and two

spring coefficients for the stance phase (one for the leg compression, the other

for the leg decompression). Carver et al. [15] study controllability of the 3D

SLIP model: for a fixed target state (horizontal position, height, and velocity of

the point-mass at the flight apex) they find all position perturbations that can be

corrected in at most two steps. Carver finds that all two-step controllable per-

turbations form a large (on the scale of the reference step-size) area surrounding

the target location. For most perturbations, within the reference step-size of the

target, two steps are enough to return to the target. A less restrictive goal for the

SLIP model is compass correction: a target apex height, velocity magnitude, and

velocity direction of the model, but no specific desired location in the plane.

Compass-correction goal, Carver claims, requires only one step to correct for

perturbations.

129

5.3 Evidence from humans

We consider two types of studies on human subjects that provide evidence in

support of our ‘Two-step controllability’ claim. The first type investigates recov-

ery strategies of humans after various disturbances during walking or standing.

Studies of the second kind aim to understand how humans plan ahead during

locomotion, e.g. where they look preparing for the next step.

Some disturbances commonly considered in treadmill experiments include

side pushes [35], slipping [78, 49, 55], and tripping [74, 62, 25]. Hof et al. [35]

study balance responses of young adults to sideway pushes (impulse = 3 to

12 kg m s−1 in magnitude) at different phases of walking. The participants were

always able to return to their preferred gait1 in at most two steps after a push.

When it was possible (based on the reaction time of the person, the instant of

the push, etc.) to move the swing leg to a desired stepping location, balance was

regained after the first step. Likewise, Tang et al. [78] report that humans can

restore balance within two steps after slipping. The slipping was simulated in

the experiment by jerking a plate under the colliding leg at the instant of colli-

sion; the plate perturbation was 10 cm in either forward or backward direction

at the speed 40 cm/s. Schillings et al. [74] research recovery strategies of humans

after stumbling over an obstacle. Healthy subjects were walking at a comfort-

able speed, when a 4.5 cm tall obstacle was released on the treadmill at different

phases of the step cycle. The authors report that the normal gait was usually

restored in two steps.

Other research that we use in support of our ‘Two-step controllability’ claim,

1 That is, they were able to return to a reference speed in a fixed direction, while always
staying within the width of the treadmill.

130

studies motion planning in humans. In a series of experiments by Patla et al.

[60, 61] and Hollands et al. [37] human participants were asked to follow a

specified path on the floor, while their gaze behavior was monitored. One of the

objectives was to understand where and when humans focus their eyes when

planning the motion. The results showed that in some tasks (change of the step

length or width, obstacle avoidance [60], raised stepping stones [37]) the partici-

pants were looking at the location they were about to step next (i.e. looking one

step ahead) most of the time. In other tasks (change of the walking direction

[60], stepping stones on flat ground [61]) the subjects on average were looking

two steps ahead, when they were focusing their eyes on specific areas on the

ground.

An interesting two-step result comes from Matthis and Fajen [50], who study

performance of humans in the obstacle avoidance task with limited visual infor-

mation. Human subjects were asked to walk across a room filled with obstacles

displayed on the floor by a projector. The obstacles were visible only within

one, two, or more step-lengths around the participant. The participants’ per-

formance (frequency of collisions) significantly improved when the visibility

radius was increase from one to two step lengths. On the other hand, visibility

of more than two step lengths ahead weakly affected the performance.

5.4 Counting rules

It may be possible to determine the possibility of, say, one-step, two-step, or

n-step controllability by comparing the number of control parameters with the

number of target restrictions. First we define

131

mcont = the number of controls available at each step. For example, for both

the planar IP and LIP models we have mcont = 2: push-off and step-size in

the IP model, and step-size and step timing in the LIP model;

mgoal = the number of restrictions on the overall state space given by the

goal. For both the planar IP and LIP models the goal, considered in this

thesis, is a given target velocity at midstance — hence mgoal = 1.

By counting equations and unknowns, it would be non-degenerate for there to

be a non-trivial (non-zero measure) n-step controllable region, if

n ∗ mcont ≥ mgoal, (5.1)

That is, there are at least as many control parameters as there are target values;

or, the dimension of the control space is at least as big as the dimension of the

target space. We must be aware, that in the same way that not all square matri-

ces are non-singular, the counting argument gives a necessary, and maybe even

likely, but not a sufficient condition.

Examples of the counting argument for simple models include:

• Consider a fixed target velocity of the 2D IP (or LIP) model. This problem

has two controls per step and one target restriction: mcont = 2 ≥ mgoal = 1.

Hence, the counting argument suggests there should be a region in the

state space (the one-step controllable region), from where the target can be

reached in one step. Further, because there is one more control (mcont = 2)

than there are goal constraints (mgoal = 1), one may expect a one-parameter

family of one-step deadbeat controllers. These conclusions are confirmed

by our calculations in Chapter 3 for the 2D IP and in Chapter 4 for the 2D

LIP model.

132

• Carver et al. [15] use similar counting arguments to guess the controlla-

bility of the 3D SLIP model, described in Section 5.2. The model has four

controls per step, mcont = 4: next footstep location (2 numbers) and two

spring coefficients for the stance phase. One of the goals Carver considers

is reaching a specific full state of the model at flight apex: location of the

point-mass in space (3 numbers) and horizontal velocity (2 numbers). That

is, mgoal = 5 and we have mcont < mgoal, but 2mcont > mgoal. Therefore, gen-

erally two steps are required to correct for perturbations from the target

state [15].

• A less restrictive goal for the SLIP model, considered by Carver et al. [15],

is compass correction, which, in contrast to a specific target state, disregards

the location of the model in the horizontal plane. The compass correction

target is defined by three values, mgoal = 3: the target apex height, velocity

magnitude, and velocity direction of the model. Therefore, mcont > mgoal

and, by the counting argument, perturbations are predicted to be cor-

rectable in one step [15].

We also consider examples of goals and counting arguments for these goals for

the 3D Inverted Pendulum model — see Appendix E.

Based on our considerations of the IP and LIP models and Carver et al.’s

analysis of the SLIP model [15], we argue that the counting rule (5.1), generally,

works for simple models and practical goals.

133

5.5 Conclusion

We considered the following question of walking balance: how many steps does

a biped generally need to recover from a perturbation? We approached this

question by studying controllability of two simple models of walking: the pla-

nar IP and LIP models. Our numerical investigations of both models showed

that, when the model is able to recover from a perturbation at all, in most cases

it can do so in two steps or fewer. This result remains valid if the actuation of

the models is limited within some practical bounds. We also provided some evi-

dence, from both the robotic community and experiments with human subjects,

showing the nearly maximal two-step recovery capabilities in more complicated

robot models and humans.

The above considerations lead us to the following proposition: two steps is

almost everything. That is, anything a biped is capable of doing at all, for most

initial conditions it can do so within only two steps. Practically, this suggests

that in a controller design for biped robots, there is no need, at least for balance

purposes, to plan the motion of the robot more than two steps ahead.

134

CHAPTER 6

STABLE, ROBUST, EFFICIENT, AND SIMPLE WALKING CONTROLLER

In this chapter we describe a new controller design approach for bipedal robots.

Some properties of controllers, which are considered important in legged loco-

motion, include:

• stability with respect to a desired motion (or range of motions);

• robustness to external disturbances, noise (in sensing, actuation, etc.), and

model errors;

• energy efficiency;

• low computer power requirements.

The robotics community has produced walking robots, which excel in some of

the above properties, but are less competent in others. For example, Boston Dy-

namics’ robots [67, 88] seem to be highly robust (not falling after strong pushes,

walking on rough terrain, ice, steep slopes, etc.), but they use two orders of

magnitude more power then humans [9, p.9]. On the other hand, robots from

the Cornell Locomotion Lab [9, 11, 21] consume about as much energy as hu-

mans (scaled), but can only walk on flat ground and in the absence of significant

external disturbances.

We propose a walking controller which tries to compromise between robust-

ness, efficiency, and stability. The proposed controller seems to have all of the

mentioned properties while maintaining a simple structure and without requir-

ing significant computation. That is, we use

• an informal approximate minimization of complexity and computation.

135

The design approach employs the concepts of (extended) viable and controllable

regions, described in detail in Chapter 2. We use the four-legged ‘bipedal’ robot

Cornell Ranger as an example case to explain the controller design method.

However, all design steps are analogous for any bipedal walking robot. In Sec-

tion 6.1, we model Ranger as the 2D IP model; constraints are employed to

represent limited actuation in Ranger. We then find extended controllable re-

gions for our proxy model of Ranger. Section 6.2 discusses desired properties of

the controller and their relation to the controllable regions. A high-level walk-

ing controller is developed: given Ranger’s velocity at midstance, it generates

the next desired stepping location and amount of push-off to be used at the

next collision. The controller is tested in simulation in Section 6.3, both in per-

fect conditions (no noises, model errors, etc.) and in the presence of random

perturbations. The largest perturbations, such that the robot does not fail, are

estimated. Section 6.4 summarizes the controller design procedure. The chap-

ter is concluded in Section 6.5 with a discussion of the main results and future

improvements of the controller design.

6.1 Test robot: Cornell Ranger

The testbed for the control ideas here is the Cornell Ranger robot. Ranger is

perhaps the most energy efficient walking robot so far, having walked 65.2 kilo-

meters on a single battery charge on May 1-2, 2011 [9, 11].

136

6.1.1 Model

In 2D conception1 Cornell Ranger (Fig. 6.1) has two legs connected by a revo-

lute hip joint. Each leg has a circular foot attached at the ankle joint. Most of the

mass is concentrated close to the hip, the legs and feet are designed to be light.

Ranger has three essential motors: one for each ankle and one for the hip joint.

The ankle motors each have one internal degree of freedom. Therefore, the pla-

nar model of Ranger has the total of six degrees of freedom (DOF): three joint

angles (two ankles and one hip), two DOF in the ankle motors, and the global

orientation of the robot (e.g. the absolute angle of the stance foot). However,

during the double stance motion, when both feet touch the ground, the abso-

lute orientation of the robot can be found from geometry, making it the total of

five DOF. Collision of the swing leg with the ground is assumed to be instan-

taneous with no change in configuration of the robot and no impulsive torques

at the joints. No slipping is considered between the feet and the ground. Full

details of the high-fidelity model of Ranger can be found in [9].

6.1.2 IP model proxy of Ranger

We use the planar Inverted Pendulum (IP) model, studied in detail in Chapter 3,

as a proxy for Ranger. The IP model is simple, low-dimensional and, hence, easy

to work with. At the same time, following discussion in Section 2.5.4 on page 39,

we believe that the dynamics of the center of mass of most bipedal robots, even

those with many degrees of freedom, are close to that of a point-mass model

(such as the IP or LIP model) during the single stance motion.

1 Ranger has two pairs of rigidly connected legs and can be considered a 2D biped with
intrinsic sideways stability.

137

(a) Photo of Ranger (b) High-fidelity model of Ranger

Figure 6.1: Four-legged bipedal robot Cornell Ranger. a) The frontal view photo of the
Cornell Ranger robot. The two inner legs, as well as the two outer legs, are interlocked,
so that the robot can be considered a 2D biped with intrinsic side stability. b) Schematics
of the Cornell Ranger high-fidelity model. The model has two rigid inertial legs and two
massless circular feet. There are three actuators: an electric motor is attached to each
of the two ankle joints through a linear spring, another electric motor creates torque at
the hip joint. A torsional spring is attached between the legs at the hip. No slipping
between the feet and the ground is considered. (Images from [9].)

There are two controls per step in our planar IP model: the next stepping

location (the size xst of the next step) and the amount of push-off p just before the

next collision. We discuss how these idealized controls of the simple model are

related to the actuation in the full model of Ranger, and how Ranger’s actuator

limitations put constraints on xst and p.

The push-off impulse p represents all effort by the ankle motors in Ranger

during and shortly before the double stance. Notice, that the double stance

phase of the full model is replaced by an instantaneous collision in the IP model.

For the nominal gait of the full Ranger model (the gait used during the 65.2 km

walk), the double stance spans 5% of the step cycle (only 3% for the physical

robot), and most of the work done by the ankle motors is done shortly before

138

and during the double stance (also true for the real robot) [9]. Because the ankle

motors on Ranger have limits on the torque they can generate, we set the up-

per bound pmax on the allowed push-off p in the IP model (see equation (6.1a)

below). We use a computer simulation of the full model of Ranger to make a

rough estimate pmax = 0.3. Details of the simulation are given in Appendix D.2

on page 192.

The second actuation in the IP model, the step size xst, replaces the hip torque

in the full model, which drives the swing leg to a desired stepping location. In

the IP model, the dynamics of the swing leg are not considered, assuming that

the swing leg can be instantaneously placed into any desired position without

affecting the dynamics of the stance leg. At the same time, in the real robot,

as well as its detailed model, the capabilities of the hip motor are limited, re-

sulting in bounds on how fast the swing leg can be moved around. We model

this limitation by constraining from below the step time (also, swing time) tst, de-

fined for the IP model as the time from the midstance to the next collision, see

equation (6.1c) below. We use both a computer simulation of the full model and

physical experiments with Ranger to estimate the minimum step time tst,min = 0.4

(∼ 0.13 sec) — see Appendix D.1 on page 190 for details.

The minimum swing time implicitly constraints the step size xst from below.

We also set an upper bound xst,max on the control xst, representing the maximum

step size Ranger is physically capable of taking. The value of xst,max is estimated

to be 0.9, constrained by the mechanical design of the robot.

To summarize, we use as a proxy for Ranger the 2D Inverted Pendulum

139

model augmented with the following constraints:

0 ≤ p ≤ pmax = 0.3, (6.1a)

0 ≤ xst ≤ xst,max = 0.9, (6.1b)

0.4 = tst,min ≤ tst. (6.1c)

6.1.3 Controllable regions

We proceed to find the (extended) controllable regions for the IP model of

Ranger. The regions are used in Section 6.2 to design a high-level walking con-

troller for Ranger.

We use the ‘average step’ of Ranger during its ultra-marathon walk [9, 11] as

the (desired) nominal trajectory for our IP model. Thus, the nominal velocity θ̇∗

is Ranger’s average speed during the walk:

θ̇∗ = 0.19, (6.2a)

The average step length of Ranger was approximately

x∗st = 0.35. (6.2b)

We set the nominal push-off amount such, that it produces a (one-step) periodic

motion of our IP model, given the midstance velocity θ̇∗ and step size x∗st. The

nominal push-off p∗ is found from the Poincaré map (3.14) and relation (3.3) by

letting θ̇0 = θ̇1 = θ̇∗ and xst = x∗st:

p∗ ≈ 0.046. (6.2c)

We will refer to the IP gait characterized by parameters (6.2) as the nominal (or

reference) trajectory of Ranger.

140

0.20 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

midstance
velocity

θ̇0

next step
size

xst

possible to reach
target in one step

max. allowed step size

reference trajectory of Ranger

(~ xst = 0.82 θ̇0 lin
e)

min. allowed step time

C
_

1
xst

C
_

2
xst

possible to reach
target in two steps

0.19 target velocity

0.35

zero leg tension just before next collision

max. allowed push-o�

C
_

∞
xst

possible to
reach target

0.2

C1

possible to reach target
within one step

0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C2 = C∞

possible to reach target
within two steps

possible to reach target

midstance
velocity

θ̇0V0
all non-failed states

0.19target velocity

0
0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 midstance
velocity

θ̇0

next
push-o�

p

0.19target velocity

C
_

1
p C

_

2
p

C
_

3
p

max. allowed push-o�

min. allowed
step time

zero leg tension
just before next

collision
+

possible to reach
target in one step

possible to reach
target in two steps

C
_

∞
p

possible to
reach target

reference trajectory of Ranger

0.046

(a) Controllable regions

(b) Extended
controllable regions:

step size controls

(c) Extended
controllable regions:

push-o� controls

Figure 6.2: Controllability of the IP model of Ranger. Similar to Fig. 3.6, (a) control-
lable regions Cn and (b), (c) extended controllable regions C̄xst

n , C̄p
n for a constrained 2D

IP model are shown. Here the constraints are proxies for limited actuation in the Ranger
robot: lower bound on the step-time (midstance-to-heelstrike time), tst ≥ tst,min = 0.4 (hip
motor limitation); maximum allowed push-off, p≤ pmax = 0.3 (ankle motor limitation);
and maximum step-size, xst ≤ xst,max = 0.9 (mechanical restriction). The target speed
θ̇t = 0.19 corresponds to Ranger’s energy-optimal gait. For this IP model of Ranger
C2 = C∞, C̄xst

2 = C̄xst
∞ , and C̄p

3 = C̄p
∞.

141

We numerically compute the controllable and extended controllable regions

Cn, C̄xst
n , and C̄p

n corresponding to the target velocity (6.2a). The computation is

analogous to the computation of the corresponding regions for the constrained

2D IP model in Section 3.2.5 on page 88. The regions Cn, C̄xst
n , and C̄p

n for our IP

model of Ranger are shown on Fig. 6.2.

As pointed out on the figure, two-step controllability is equivalent to∞-step

controllability:

C2 = C∞. (6.3)

That is, for our simple model of Ranger, if it is possible to return to the nom-

inal trajectory at all (e.g. after a disturbance), it is always possible to do so

within two steps. This result supports the ‘Two-step controllability’ claim made

in Section 2.3.2. Note, that there are states (such as θ̇0 = 0.8) for which a two-step

policy is required to return to the nominal trajectory, i.e. a return in one step is

impossible: C1 , C2. Relation (6.3) holds true for the step-size controls as well:

C̄xst
2 = C̄xst

∞ . All possible step-size controllers, which allow to reach the nominal

speed, are either one- or two-step policies. Two-step controllability, however, is

only approximate for the push-off controllers: C̄p
2 ≈ C̄p

∞, while C̄p
3 = C̄p

∞.

The size of the region C̄xst
∞ is mostly restricted by the actuator limitations: the

top boundary of C̄xst
∞ corresponds to the maximum step-size constraint (6.1b),

while the bottom boundary to the minimum step-time (6.1c). On the other hand,

the push-off limitation (6.1a) has no effect on C̄xst
∞ and, hence, on the controlla-

bility of the model.2 Restrictions of the robot in taking a step appear to prevail

over those in pushing off during a recovery of the robot.

2 The dashed line on Fig. 6.2b shows the part of the C̄xst
∞ boundary corresponding to the

maximum push-off, if the step-size was not restricted from above.

142

Notice, that all boundaries of C̄xst
∞ are target independent and are only related

to the initial velocity and step-size. Therefore, for any combination (θ̇0, xst) out-

side of C̄xst
∞ , the robot fails. On the other hand, for any point in C̄xst

∞ , the robot

can reach the nominal trajectory and, thus, step indefinitely. We conclude that

the extended viability kernel V̄ xst
∞ is the same as the ∞-step controllable region:

C̄xst
∞ = V̄ xst

∞ , supporting the ‘Viable is Controllable’ claim in Section 2.3.1 on page

25. Similarly, C̄p
∞ = V̄ p

∞. Because the viable and controllable regions Vn and Cn are

projections of their extended counterparts onto the velocity axis, we also state:

C∞ = V∞.

6.2 Controller design for Ranger

We develop a high-level controller for Cornell Ranger, using the simple IP

model of Ranger and its controllable regions described in Section 6.1 above. For

a given midstance velocity θ̇0 of the robot, the controller tells where to step (i.e.

the next step size xst) and how hard to push off (the next push-off p). Thus, we

split the high-level controller into the step-size controller ux:

xst = ux(θ̇0), (6.4a)

and the push-off controller up:

p = up(θ̇0). (6.4b)

For simplicity of the approach, we consider the two above controllers separately.

First, we construct the step-size controller ux in Sections 6.2.1 to 6.2.5, and then

complement it with the push-off controller up in Section 6.2.6. This procedure

can be done in the reverse order as well, starting with up and then augmenting it

143

with ux. The resulting walking controller may depend on the design order quan-

titatively, but in either case it will have all desired qualities listed in Chapter 6

on page 135.

6.2.1 Step-size controller: objectives

The function ux(·) in (6.4a) defines a curve in the (θ̇0, xst)-plane, assigning a

unique step size xst to each velocity θ̇0. Designing a step-size controller ux is

drawing a curve in the (θ̇0, xst)-plane. We are going to state the criteria, which

we use to draw the step-size controller curve ux.

First, the controller has to avoid a failure of the robot (i.e. avoid falling down

and violating constraints) at any cost.3 To achieve this, we want the robot’s ve-

locity θ̇0 to always be in the viability kernel V∞ and the corresponding step-size

xst in the extended viability kernel V̄ xst
∞ , i.e. (θ̇0, xst) ∈ V̄ xst

∞ . However, recall from

Section 6.1.3, that for our IP model of Ranger, V∞ = C∞ and V̄ xst
∞ = C̄xst

∞ . Thus, we

require the step-size controller curve ux to be inside the extended ∞-step con-

trollable region C̄xst
∞ , which is shown on Fig. 6.2b. This condition guarantees not

only the possibility of not failing, but also the possibility to reach the nominal

velocity θ̇∗.

Next, we want the controller to produce a stable walking around the nominal

trajectory. If the robot is exactly on the nominal trajectory, the controller should

take no correcting actions, i.e. it has to use the nominal step-size x∗st and nominal

push-off p∗. Therefore, the curve ux has to pass through the point (θ̇∗, x∗st).

3 Koolen, et al [42] argue that in certain (possibly extreme) cases it might be preferential to let
the robot fall down (safely) and then get up again, than trying to balance the robot at any cost.
While accepting this argument, we do not consider such rather extreme strategies in this thesis.

144

Among all step-size controller curves (6.4a) which

• are inside the region C̄xst
∞ ,

• pass through the nominal trajectory point (θ̇∗, x∗st),

we want to find one which is (approximately) optimal with respect to several

different objectives. For a bipedal robot, such objectives include, as listed on

page 135, stability, robustness, and energy efficiency. At the same time, we want

the controller to have a simple structure. We proceed to discuss and quantify

each of the optimization objectives for our simple model of Ranger.

6.2.2 Stability

We call a controller stable if it returns the system back to the nominal trajectory

after a perturbation. For our model, to reach the nominal trajectory is to reach

the nominal velocity θ̇∗ at midstance.

We look at the error ∆θ̇= |θ̇ − θ̇∗| between the perturbed velocity θ̇ and the

nominal θ̇∗, and how this error changes after each step. We define the (next-

step) relative error in velocity ν as the ratio of the error ∆θ̇1 after one step to the

initial error ∆θ̇0:

ν(θ̇0, xst, p) =
|θ̇1(θ̇0, xst, p) − θ̇∗|

|θ̇0 − θ̇∗|

=
fractional reduction of disturbance

after one step
. (6.5)

The relative error ν is a function of the initial velocity θ̇0 and controls xst, p used

during the step; the velocity θ̇1 at the next midstance is found from the Poincaré

145

map (3.14). For the controller to be stable, the controls xst and p have to be such,

that the absolute error ∆θ̇ decreases, i.e. the relative error ν < 1. For example,

ν= 0.7 implies that the disturbance has decreased by 30% in one step.

For the step-size controller design, we would like to know the effect of the

step-size xst on the relative error in velocity. We define the best relative error νx for

a given xst and initial velocity θ̇0 as the smallest relative error ν over all viable

push-offs:

νx(θ̇0, xst) = min
p

ν(θ̇0, xst, p). (6.6)

That is, νx is the best relative error that can be achieved (with an appropriate

push-off) for a specific step-size controller. We want νx to be possibly smaller,

thus indicating faster convergence to the nominal trajectory. If νx > 1, the veloc-

ity error increases, i.e. the controller is not stable.

Fig. 6.3a shows the best error νx for all points (θ̇0, xst) inside the extended ∞-

step controllable region C̄xst
∞ . The color scheme and contour lines on the figure

indicate the level lines of νx, which varies from 0 to 1 inside C̄xst
∞ . Notice, that νx is

never greater than 1, i.e. it is always possible to avoid the disturbance growing;

νx is exactly 1 (disturbance does not change) only in a small area, when both

velocity θ̇0 and step size xst are small. Therefore, (almost) any curve ux inside

C̄xst
∞ produces a stable step-size controller.

The value of νx is smallest, νx = 0, in the extended 1-step controllable region

C̄xst
1 , the lightest area in the Fig. 6.3a. For the step sizes from C̄xst

1 it is possible,

with an appropriate push-off, to reach the nominal velocity θ̇∗ exactly (i.e. to

fully eliminate disturbance) in one step. Hence, from the speed-of-convergence

point of view, the best step-size controller curves are those inside the region C̄xst
1 .

Two examples of such one-step dead-beat controllers are shown by the dashed

146

0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

νxlevels of

nominal trajectory of Ranger

0.35

νx = 0

possible to have no velocity
error after one step

examples of
stable step-size

controllers
optimal dead-beat controller

a simple dead-beat controller

linear controller

0.19nominal velocity
0.2

nominal
step size

νx =
velocity error after 1 step

initial velocity error

colored region is
C

_

∞
xst = C

_

2
xst

midstance velocity, θ̇0

ne
xt

 s
te

p
si

ze
, x

st

0.2

0.4

0.6

0.8

1

0.4

0.8

0

0

(a) Stability of the step-size controller; example controllers.

0 0.1
0.19

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

0.35

nominal velocity
0.2

νx
 = 0

νx = 0.62

νx = 1

suggested step-size controller
(absolute value function)

constant distance
from viability boundary

energy e�cient
nominal trajectory

robustness

at most 62% of disturbance
remains after one step stability

nominal
step size

midstance velocity, θ̇0

ne
xt

 s
te

p
si

ze
, x

st

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

νxlevels of
νx =

velocity error after 1 step
initial velocity error

(~ xst = 0.82 θ̇0 lin
e)

min. allowed step time

d

colored region is
C

_

∞
xst = V

_

∞
xst

(b) Proposed step-size controller.

Figure 6.3: Step-size controller for Ranger. (continued on the next page)

and dash-dot lines in the figure. Each of them passes through the nominal tra-

jectory of Ranger. The dash-dot controller always picks the smallest step size

among those in C̄xst
1 (except near the nominal trajectory) — as we discuss in Sec-

tion 6.2.3 below, small step-sizes are preferable for Ranger for both robustness

147

Figure 6.3: (a) Consider stabilization of the IP model of Ranger around the nominal
trajectory. For each initial velocity θ̇0 and step size xst, the quotient νx tells by how much
the velocity error can be diminished in one step, given the best push-off (see (6.5), (6.6)
for definition). Smaller νx indicates a bigger error decrease, faster convergence to the
nominal trajectory, better step-size controller. The color scheme and contour lines show
levels of νx for all points in the extended∞-step controllable region C̄xst

∞ . Three example
controllers are shown. The dashed line represents a simple dead-beat controller: νx = 0,
all disturbance is eliminated in one step. The dash-dot line is a dead-beat controller with
the smallest step-sizes (good for robustness). The dotted controller is linear, but has
small error reduction. Note, all controllers with fast convergence ask for larger than the
nominal step-sizes for any disturbance. (b) The step-size controller proposed for Ranger
is illustrated. It is represented by an absolute-value function (6.10). Such qualities as
energy efficiency, robustness, stability, and speed of convergence are considered in the
controller design. Energy efficiency is taken into account by the choice of a nominal
trajectory with low energy use. Robustness by keeping the controller curve away from
the boundaries of the region C̄xst

∞ — hence, a greater perturbation is required to fail the
robot. Stability and speed of convergence by making sure the relative error quotient νx
is ‘sufficiently below’ 1 for any velocity. For the proposed controller, νx < 0.62: at most
62% of the initial disturbance remains after one step.

and safety reasons. On the other hand, the dash controller has a simple struc-

ture, being represented by an absolute value function.

Another example, shown by the dotted line, is a linear step-size controller.

The convergence to the nominal velocity is slow (the error νx is close to 1) for

this controller in the case of small perturbed velocities. Notice, that no linear

controller, which passes through the nominal trajectory, allows fast convergence

(small νx) for all perturbations. It appears preferential for Ranger to correct for

any disturbance by taking larger steps than the nominal x∗st. Section 6.5 provides

more insights into the benefits of larger steps.

6.2.3 Robustness

We want the robot to be robust — it has to be able to avoid a failure (be ∞-

step viable) and to return to the nominal trajectory (∞-step controllable) in the

148

presence of model errors, process and sensor noise, and external disturbances.

These random processes may have a complex (e.g. non-Gaussian) nature and

are generally hard to model accurately. A detailed discussion on noises and

uncertainties in Ranger and their effects on Ranger’s performance can be found

in [16].

For the design of our step-size controller (6.4a), we assume that the effects of

random disturbances and errors can be represented by random changes in the

midstance velocity θ̇0 and the step size xst assigned by the controller, i.e. in the

extended state (θ̇0, xst). Note, that this assumption takes into account possible

process noise in the push-off as well, because velocity θ̇0 is a function of the

push-off at the previous collision. Hence, the goal for a robust controller is to

minimize the probability of such random perturbations pushing the extended

state outside of C̄xst
∞ (= V̄ xst

∞). As a simple proxy for this probability, we use the

distance to the boundary of C̄xst
∞ : the closer the system is to the boundary, the

more likely it is to be pushed outside of the region.

A step-size controller only determines the vertical coordinate of an extended

state (θ̇0, xst), while the horizontal coordinate, the velocity θ̇0, is always given.

That is, the controller determines the distance from the extended state to only

the top and bottom boundaries of C̄xst
∞ (see Fig. 6.2b). Therefore, from the point of

view of robustness, we want the step-size controller curve to stay possibly far

from these two boundaries, which correspond to the maximum allowed step-

size (6.1b) and the minimum allowed swing-time (6.1c) respectively.4

The maximum-step-size boundary is a horizontal line. Maximizing the dis-

4 We neglect the distance to the boundary portion in the top-right corner of C̄xst
∞ , which corre-

sponds to zero leg-tension just before heel-strike. First, this portion is short, compared to other
boundaries. Second, it is in the range of large velocities (θ̇0 > 0.81) that are far beyond Ranger’s
normal range of walking.

149

tance to it is equivalent to minimizing the step size xst. We also note, that apart

from the robustness reasons, large steps are not desirable for Ranger because of

greater collision impacts and, as a result, a higher chance of a mechanical dam-

age to the robot. The minimum-swing-time boundary is well approximated by

a straight line going through the origin:

xst = αθ̇0, where α = 0.82. (6.7)

The distance from an arbitrary point (θ̇0, xst) to this line is given by

d = β (xst − αθ̇0), (6.8)

where β = 1/
√

1 + α2 ≈ 0.77. If d < 0, the extended state (θ̇0, xst) is outside of C̄xst
∞ .

Thus, the robustness optimization of the step-size controller (6.4a) has two

objectives:

• minimization of the step size xst;

• maximization of the distance d as in (6.8) — this approximately minimizes

the probability of violating the minimum-swing-time restriction (6.1c).

These two objectives compete with each other (and with the stability objective

discussed in Section 6.2.2 above) inside the extended∞-step controllable region

C̄xst
∞ . We resolve this competition and design a step-size controller for Ranger in

Section 6.2.5.

6.2.4 Efficiency

By energy efficiency we mean little energy used by the robot for walking. The

total energy cost includes both the work done by the motors and electrical over-

150

heads (energy required to run all electronics on the robot, such as microproces-

sors and sensors).

Our approach to energy efficient walking is as follows. We choose an energy-

efficient nominal trajectory of the robot. We then design a controller which

attempts to keep the motion close to the nominal trajectory at all times. Our

assumption is that the energy use does not grow significantly, as long as the

robot stays ‘close’ to the nominal trajectory (see Appendix D.3 on page 193 for

supporting calculations). At the same time, in the case of large disturbances,

we first want to make sure the robot does not fail and only worry about energy

cost when it is safe to do so (i.e. when the robot is again close to the nominal

trajectory).

The nominal trajectory we use for our IP model of Ranger is defined by (6.2).

It corresponds to the reference trajectory used during Ranger’s 65.2 km walk,

which was designed to approximately minimize energy use of the robot [9].

The measure of efficiency used during the numerical minimization was the total

cost of transport:

TCOT =
total energy used by robot
weight × distance traveled

. (6.9)

TCOT is a non-dimensional number. For the ultra-marathon walk of Ranger,

TCOT ≈ 0.28 [9] — compare it with the estimated 0.2 for humans [13], 3.2

for ASIMO [21, 22], 5 for Petman [9], and 0.2 for Cornell powered biped with

knees [22].

Thus, taking energetic costs into account in the design of our walking con-

troller for Ranger amounts to choosing trajectory (6.2) as the nominal trajectory,

i.e. the speed θ̇∗ as the target speed at midstance.

151

6.2.5 Step-size controller

In Section 6.2 above we considered various optimization objectives for the de-

sign of our step-size controller (6.4a): stability, speed of convergence, robust-

ness, and energy efficiency. Putting them together, the desired controller is rep-

resented by a curve in the (θ̇0, xst)-plane which has to

• stay inside the extended ∞-step controllable region C̄xst
∞ (viability & con-

trollability, Sec. 6.2.1);

• pass through the nominal-trajectory point (θ̇∗, x∗st) (energy efficiency,

Sec. 6.2.4);

and which tries to compromise between four competing goals:

(i) maximization of the distance d to the minimum-step-time boundary of C̄xst
∞ ;

d is given by (6.8) (robustness, Sec. 6.2.3);

(ii) minimization of the step size xst (robustness & robot damage prevention,

Sec. 6.2.3);

(iii) minimization of the relative error νx after one step, defined by (6.6) (stabil-

ity & speed of convergence, Sec. 6.2.2);

(iv) simplicity and little amount of computation.

Using these criteria as guidance, we propose the step-size controller presented

on Fig. 6.3b (our choice is explained in the discussion below). The controller

curve is a (scaled) absolute value function, centered at the nominal trajectory

(θ̇∗, x∗st):

xst = ux(θ̇0) = x∗st + α|θ̇0 − θ̇
∗|, (6.10)

152

where θ̇∗ and x∗st are given by (6.2a) and (6.2b) respectively. The coefficient α is

such that the right arm of the controller curve (for which θ̇0 > θ̇∗) is approxi-

mately parallel to the bottom boundary of C̄xst
∞ , which corresponds to the mini-

mum step-time constraint (6.1c). Thus, α is defined by equation (6.7).

We justify the choice of the controller (6.10) as follows. First, we would like

the controller to be as simple as possible. As discussed in Section 6.2.2, step

sizes bigger than the nominal x∗st are preferred for Ranger for fast convergence

(goal (iii) above). A (scaled) absolute value function centered at (θ̇∗, x∗st) is a

simple curve satisfying xst ≥ x∗st and passing through the nominal trajectory.

Two examples of such absolute-value controllers are the proposed controller

(6.10) on Fig. 6.3b and the dashed-line controller on Fig. 6.3a. Note, that an

absolute value function is a form of the controller that we guess is convenient

for the particular nominal trajectory (6.2) that we use as an example. Extension

of the controller for different nominal trajectories (e.g. higher target velocities)

may require considering a more general form of the controller. For example,

a slight generalization of the controller (6.10) is one with different slopes for

velocities smaller than the nominal θ̇∗ than for velocities larger than θ̇∗.

Next, given the absolute-value form of the controller, the coefficient α (i.e.

the slopes of the controller function) has to be decided. Our proposed con-

troller (6.10) is such that the distance d to the step-time boundary of C̄xst
∞ is never

smaller than it is for the nominal trajectory (goal (i) above). That is, the pro-

posed controller is always as robust as when the robot is exactly on the nominal

trajectory. A controller that is closer to the step-time boundary (i.e. smaller α)

implies a smaller robustness: a higher risk of the robot’s failure because there

is not enough time to take a step. On the other hand, a larger distance to the

153

boundary (larger α) increases the robustness, but also requires taking bigger

steps, which is not desirable due to a higher risk of a robot damage (goal (ii)

above). Thus, the controller (6.10) is the compromise we choose between the

competing objectives (i) and (ii): it is a controller with the smallest step-sizes

that has the robustness of the nominal trajectory.

Similar reasoning can be used with regard to the speed of convergence (the

relative error νx, goal (iii)). The coloring of Fig. 6.3b repeats that of Fig. 6.3a and

shows the levels of the error νx inside the region C̄xst
∞ . A controller curve closer to

the step-time boundary (smaller α) means slower convergence (larger error νx),

while a controller farther from the boundary (bigger α) requires larger step-sizes

(higher risk of physical damage). For our proposed controller (6.10), νx < 0.62

for any velocity. That is, at most 62% of the disturbance remains after one step,

which we guess to be a sufficiently fast convergence.

Thus, based on the discussion above, we suggest (6.10) as a step-size con-

troller for Ranger: for any disturbance, the controller is as robust as on the nom-

inal trajectory and returns back to the nominal trajectory ‘sufficiently fast’; at the

same time the controller is energy efficient and simple. Note though, that the

proposed controller is not unique, both its form (absolute value function) and

parameter value (α) are hand-picked, based on our intuitive choices (e.g. of a

‘safe’ distance d to the boundary, ‘fast’ convergence, and ‘simple’ form). Different

priorities between the desired properties of the controller may lead to a quanti-

tatively different result. For example, a smaller accent on avoiding large steps

may suggest a bigger value of the coefficient α (e.g. the dead-beat controller on

Fig. 6.3a represented by a dashed curve), which improves both the robustness

and the speed of convergence. Alternatively, no requirement of a simple struc-

154

ture of the controller may suggest the minimum-step-size dead-beat controller

shown by a dash-dot line on Fig. 6.3a.

6.2.6 Push-off controller

We now discuss the push-off controller (6.4b), which complements the step-size

controller (6.10) that we designed in Section 6.2.5 above. For a given midstance

velocity θ̇0, the push-off controller up assumes (6.10) (Fig. 6.3b) as the next step-

size xst, and computes the push-off amount p to be applied just before the next

collision.

We follow the same approach we used to the design the step-size controller.

First, we find all push-offs that are viable (i.e. the robot does not fail in the next

step) for each velocity θ̇0 and the corresponding step-size xst = ux(θ̇0). Next,

among all such push-offs we choose those that ‘best’ compromise between ro-

bustness, speed of convergence, energy use, and simplicity.

For a given velocity θ̇0 the range of viable push-offs is determined by the

Poincaré map (3.14), constraints (3.15), and actuator limitations (6.1). The set

of all θ̇0 and p that satisfy these equations (assuming the step-size controller

(6.10)) is shown on Fig. 6.4 as the colored region V̄ p
ux . We found V̄ p

ux by draw-

ing its boundaries, which correspond to one of the constraints being active, i.e.

turning into equality. From above, the region is bounded by the zero-ground-

impact curve (constraint (3.15a)) and by the maximum allowed push-off restric-

tion (6.1a). Note, that the non-smoothness of the zero-ground-impact curve at

the nominal velocity θ̇0 = θ̇∗ is due to the kink in the absolute-value function of

the step-size controller (6.10) (see Fig. 6.3b). From below, the region is limited by

155

0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.046

0.15

0.2

0.25

0.3

fraction of velocity error
remaining after one step

νp =
0 0.2 0.4 0.6 0.8 ≥1

νplevels of

ν p
 = 1

ν p
 = 0.7

ν p
 = 0.5

0.7
1

suggested
push-o�

controller

nominal
push-o�

p*

1

suggested
push-o�

controller

0.19
θ̇* nominal velocity

0.2
midstance velocity, θ̇0

ne
xt

 p
us

h-
o�

, p

max. allowed push-o�

reaching the top
with zero velocity

V
_

u
p
x

zero leg tension
just before collisionnext step is not failed

0

0.02

0.04

0.06

0.08

0.1

0.15 0.2 0.25
zoom of the boxed area

1

0.7

0.5

1

0.7

0.5

zero ground im
pact

1-step dead-
beat controller

(νp = 0)

0.1

Figure 6.4: Push-off controller for Ranger. The proposed push-off controller for
Ranger is a piece-wise linear function (6.12) of midstance velocity θ̇0. It has two lin-
ear intervals, one for small velocities and one for velocities around the nominal θ̇∗, and
is identically zero for large velocities. The controller is designed assuming the step-size
controller (6.10) (Fig. 6.3b) and taking into account energy efficiency, robustness, and
speed of convergence. Energy efficiency is accounted for by choosing a nominal tra-
jectory with low energy use. Robustness by keeping the controller curve farther inside
the region V̄ p

ux (all velocities and push-offs for which the next step is not failed). Speed
of convergence is defined by the quotient νp, the fraction of the initial disturbance that
remains after one step. The colors and level lines show the values of νp for all points
inside V̄ p

ux . The proposed controller is such as to always keep νp ‘sufficiently small’:
νp < 0.72. The picture on the right zooms into the area around the nominal trajectory.

the x-axis (zero push-off line, constraint (3.15d)) and by the requirement for the

robot to reach the next midstance (the corresponding boundary curve is found

by setting θ̇1 = 0 in the Poincaré map (3.14)). Finally, the vertical boundary on

the right corresponds to the non-negative leg-tension constraint (3.15b).

The push-off controller up is a curve in the (θ̇0, p)-plane, which we want to be

inside V̄ p
ux and pass through the nominal trajectory point (θ̇∗, p∗). The controller

curve should be simple and correspond to a robust, energy efficient, and ‘fast’-

converging controller. We consider the mentioned qualities of the controller the

same way as in the design of the step-size controller in Sections 6.2.2 – 6.2.4. En-

ergy efficiency is taken into account only by the choice of the nominal trajectory

with low energy use (Section 6.2.4). Robustness is represented by the distance

156

of the controller curve to the boundary of the region V̄ p
ux (Section 6.2.3): if the

curve is closer to the boundary, it is more likely that a random perturbation will

cause the robot to fail. For the speed of convergence, we look at the relative er-

ror ν, defined by (6.5): ν is the fraction of the initial error in velocity that remains

after one step, for a given initial velocity θ̇0, step size xst, and push-off p (Sec-

tion 6.2.2). We call νp the relative error ν that assumes the step-size controller

(6.10):

νp(θ̇0, p) = ν(θ̇0, ux(θ̇0), p). (6.11)

Both the color scheme and level lines on Fig. 6.4 show the relative error νp for

all points inside the region V̄ p
ux . For faster convergence to the nominal trajectory,

the push-off controller curve has to be in possibly lighter areas of the region

(smaller νp).

Based on the νp map, we want the controller to be approximately linear

around the nominal velocity θ̇∗, use large push-offs for small velocities and

small push-offs for big velocities. We use a simple curve that satisfies these re-

quirements and is inside the region V̄ p
ux : a piece-wise linear controller that goes

through the point (θ̇∗, p∗) and is bounded from below by zero:

p = up(θ̇) = max
{
min

{
p∗ − αp(θ̇0 − θ̇

∗), p0 − βpθ̇0

}
, 0

}

=



p0 − βpθ̇0, if θ̇0 <
p∗+αpθ̇

∗−p0

αp−βp

p∗ − αp(θ̇0 − θ̇
∗), if p∗+αpθ̇

∗−p0

αp−βp
≤ θ̇0 ≤ θ̇

∗ +
p∗

αp

0 if θ̇0 > θ̇
∗ +

p∗

αp

(6.12)

where αp, βp, and p0 are positive controller parameters. The push-off controller

(6.12), with αp, βp, and p0 given by (6.13) as explained below, is shown on

Fig. 6.4. The controller has two linear intervals (one for small velocities, the

other for velocities close to the nominal θ̇∗) and is zero for large velocities.

157

The linear coefficient αp determines the slope of the controller for small dis-

turbances, i.e. for velocities around the nominal θ̇∗. As one can see from Fig. 6.4,

the slope affects the speed of convergence to the nominal velocity (i.e. the rela-

tive error νp). Notice, that the one-step dead-beat controller (the νp = 0 level line)

is approximately a straight line. Hence, the convergence-optimal value of αp is

the one which approximates the dead-beat controller: αp ≈ 2. However, we pre-

fer to use a smaller slope in order to avoid high gains in the robot controller and

also stay away from the dark areas (νp > 1, divergence) both below and above

the nominal trajectory. We hand-pick

αp = 1 (6.13a)

such that the convergence remains ‘sufficiently fast’: νp < 0.55 for small distur-

bances for the value of αp above.

The parameters βp and p0 define the linear part of the push-off controller for

small velocities: βp is the slope of the controller, while p0 is its vertical shift (the

point of intersection of the controller with the y-axis). From the point of view

of robustness, p0 should be not too large (as to avoid the zero-ground-impact

boundary on the top) and not too small (to avoid the reaching-the-top bound-

ary on the bottom). On the other hand, larger p0 is preferential due to faster

convergence to the nominal trajectory (smaller νp, lighter areas in the figure).

Similarly, for a given p0, larger slope βp corresponds to larger distance from the

top boundary, but slower convergence. We hand-pick the values of βp and p0,

such that the convergence is not ‘too slow’ (say, νp < 0.75) and the controller is

roughly ‘parallel’ to the top boundary:

p0 = 0.1, (6.13b)

βp = 0.2. (6.13c)

158

Given the values of the control parameters (6.13), νp is at most 0.72 for any dis-

turbance. The maximum is reached at θ̇0 ≈ 0.12.

Note also, that saturation of the controller (6.12) from below by p = 0 (hence,

the controller curve lying exactly along the p = 0 boundary of V̄ p
ux for large ve-

locities) is not a threat to robustness of the robot, because the robot is physically

not capable of generating negative push-offs.

The piece-wise linear controller (6.12) with parameters (6.13) is our push-off

controller for Ranger and is shown on Fig. 6.4. It provides all of robustness,

energy-efficiency, and convergence and has a simple structure. This push-off

controller is not unique: different priorities between the mentioned properties

may lead to a quantitatively different controller.

6.2.7 Summary of the Ranger controller

We designed in Section 6.2 above a high-level walking controller for the Ranger

robot and the nominal (desired) trajectory (6.2). At each midstance, depending

on the current velocity θ̇0, the high-level controller corrects the robot’s trajectory

by changing two parameters: the size of the next step xst and the push-off im-

pulse p just before the next collision. The new values of xst and p are given by

the step-size controller (6.10) and push-off controller (6.12) respectively:

xst = ux(θ̇0) = x∗st + α|θ̇0 − θ̇
∗|, (6.14a)

p = up(θ̇0) = max
{
min

{
p∗ − αp(θ̇0 − θ̇

∗), p0 − βpθ̇0

}
, 0

}
. (6.14b)

The high-level controller has three parameters defining the nominal trajectory:

159

θ̇∗, x∗st, p∗ Nominal speed, step size, and push-off given by (6.2). p∗ is a

function of θ̇∗ and x∗st as defined by (3.14).

and four tuning parameters stabilizing the motion around the nominal trajec-

tory:

α The slope of the step-size controller; given by (6.7). Increase in α

improves robustness and convergence, but makes steps bigger

(higher risk of robot damage).

αp The slope of the push-off controller around the nominal veloc-

ity; given by (6.13a). Larger αp implies faster convergence, but

higher control gains.

p0 The constant term in the push-off controller for small velocities;

given by (6.13b). Bigger p0 decreases robustness, but increases

the speed of convergence.

βp The slope of the push-off controller for small velocities; given by

(6.13c). Larger βp improves robustness, but decreases the speed

of convergence.

Our controller (6.14) defines high-level behavior of Ranger: where to step

and how hard to push off. Implementation of the controller on the physical

robot requires designing low-level controllers which realize the commanded

high-level behavior. Such low-level controllers may, for example, be the cur-

rents provided to each of the motors on the robot at each instant of time. In this

thesis, we do not consider low-level controls. Hand-tuning of the parameters α,

αp, βp, and p0 may also be required for ‘best’ performance of the robot.

160

6.3 Simulation results

We test in simulation the walking controller (6.14) which we designed for

Ranger in Section 6.2. The simulation of the 2D IP model of Ranger and all

related calculations are done in Matlab.

To test the performance of the controller, we allow random disturbances to

the model. These may be due to external disturbances (wind, uneven ground,

etc.), process and sensor noise, and model errors. We assume that in our sim-

ple model of Ranger the effects of all such disturbances can be represented by

random perturbations in the midstance velocity θ̇0 and the two controls, the

step size xst and push-off p. We call these random perturbations µv, µx, and µp

respectively:

˜̇θ0 = θ̇0 + µv, (6.15a)

x̃st = xst + µx = ux(˜̇θ0) + µx, (6.15b)

p̃ = p + µp = up(˜̇θ0) + µp. (6.15c)

Perturbation µv accumulates all disturbances that affected the robot’s velocity

during the previous step. Note, that we let the new (perturbed) velocity ˜̇θ0 be

available to both the step-size controller ux and the push-off controller up. We

assume that possible state-estimation errors are taken into account by the con-

troller perturbations µx and µp.

First, we simulate the controller (6.14) in the absence of noise, i.e. when

µv = µx = µp = 0. Fig. 6.5 displays two trajectories of the robot over 10 steps,

showing the midstance velocity θ̇0 as a function of the step number. One trajec-

tory starts with the initial velocity θ̇0 = 0.05, the other with θ̇0 = 0.5. In both cases,

the robot returns to within 10% of the nominal velocity θ̇∗ in five steps, and then

161

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

step number

Velocity trajectories in the absence of noise

m
id

st
an

ce
 v

el
oc

ity
,

θ̇ 0

0.19

θ̇*
nominal
velocity

Figure 6.5: Simulation of the proposed controller with no noise. The simple model of
Ranger with the proposed controller (6.14) is simulated. The evolution of the midstance
velocity θ̇0 over ten steps is shown for two different initial conditions. No noise or
external disturbances are considered. For both initial velocities, the robot returns to
within 10% of the nominal velocity θ̇∗ in five steps.

approaches θ̇∗ asymptotically. The total energy costs (TCOT, as defined in Ap-

pendix D.3) of the ten steps are 0.131 and 0.093 correspondingly, as compared

to the 0.12 cost of the nominal trajectory (Fig. D.2).

Next, we consider disturbances (6.15) one at a time, starting with the velocity

perturbations µv. We test the proposed controller by looking at its performance

in the ‘worst scenarios’, when disturbances are largest. That is, we model the

random disturbance µv as always taking on a value with the largest allowed

magnitude: µv is randomly selected as either +mv or −mv, where mv is a given

noise level. We consider different noise levels in the range 0≤mv ≤ 0.12 and for

each mv we run a simulation over N steps, with N =10,000 for simulations pre-

sented here. Each simulation starts at the nominal velocity θ̇∗ — for other initial

velocities the motion converges to a neighborhood of θ̇∗ after the first few steps

(see the discussion below). The statistics of each simulation are collected and

displayed on Fig. 6.6a as a function of mv. The average deviation of the per-

162

Simulations with random velocity perturbations

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.05

0.1

0.15

0.2

0.25

ab
so

lu
te

 e
rr

or
 in

 v
el

oc
ity

robot
fails

max. error

one st. dev. from
the mean error

mean error
(just before disturbance)

velocity disturbance magnitude, mv

mean error

(just after disturbance)

statistics of 10,000 steps
for each disturbance level mv

mv = Mv ≈ 0.092

(a) Controller performance for different magnitudes of disturbance

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

θ̃̇0 midstance velocity after disturbance
θ̇0 midstance velocity before disturbance

step number

m
id

st
an

ce
 v

el
oc

ity
, θ̇

0

nominal velocity θ̇* = 0.19

disturbance magnitude mv = 0.05

(b) Example velocity trajectory

Figure 6.6: Simulations with random velocity perturbations. The simple model of
Ranger with the proposed controller (6.14) is simulated. At each midstance a random
perturbation µv = ± mv of a fixed magnitude mv is added to the robot’s velocity. (a) A
series of 10000-step-long simulations is run for a range of different mv. Displayed are
the statistics of simulations as a function of mv: the mean, maximum, and standard
deviation of the error in perturbed velocity ˜̇θ0, and the mean error of the velocity θ̇0 just
before the perturbation. In all simulations with mv > Mv ≈ 0.092 (48% of the nominal
velocity θ̇∗) the robot fails. (b) An example simulation with the disturbance magnitude
mv = 0.05: the trajectories of both ˜̇θ0 and θ̇0 are shown.

turbed velocity ˜̇θ0 from the nominal θ̇∗, i.e. the mean error ∆ ˜̇θ0 = | ˜̇θ0 − θ̇
∗|, is

approximately equal to the disturbance magnitude mv for all simulations.

In our simulation trials the robot consistently completes 10,000 steps without

163

a failure when

0 ≤ mv ≤ Mv, where Mv ≈ 0.092. (6.16a)

On the other hand, the robot consistently fails for any disturbance magnitude

mv >Mv. Each failure is due to a perturbation rendering the midstance veloc-

ity negative (hence, backwards motion which we do not allow). Therefore, we

say that Mv is the largest magnitude of velocity perturbations, such that the pro-

posed controller (6.14) is reliable (assuming no other disturbances in the model).

The value of Mv above is about 48% of the nominal velocity θ̇∗. Fig. 6.6b shows

an example trajectory of the robot for mv = 0.05 over a 100 steps. The trajectories

of both the perturbed velocity ˜̇θ0 and the midstance velocity θ̇0 just before the

perturbation are shown.

Similar to the velocity perturbations µv, we consider the noises µx and µp in

the step-size and push-off controls respectively. Both noises are modeled as al-

ways taking on the maximum allowed magnitude: µx = ±mx, µp = ±mp. Fig. 6.7a

shows the statistics of the 10,000-step-long simulations with only the step-size

noise present in the model. The robot walks reliably (consistently completes

10,000 steps without a failure) for the noise levels mx in the range

0 ≤ mx ≤ Mx, where Mx ≈ 0.082. (6.16b)

The velocity θ̇0 stays within 10% of the nominal velocity θ̇∗ (i.e. the maximum

error is about 0.019) for the largest noise mx = Mx in the range above. For bigger

noises, mx >Mx, the robot fails because of flying after the push-off (violation of

constraint (3.15a)). The maximum tolerable disturbance-magnitude Mx is about

23% of the nominal step-size x∗st defined by (6.2b).

In the case of the push-off perturbations µp, as shown on Fig. 6.7b, the con-

164

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.01

0.03

0.04

0.05

0.06

ab
so

lu
te

 e
rr

or
 in

 v
el

oc
ity

robot
fails

max. error
one st. dev. from
the mean error

step-size disturbance magnitude, mx

statistics of 10,000 steps
for each disturbance level mx

mean error

0.02

mx = Mx ≈ 0.082

(a) Step-size perturbations

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.01

0.02

0.03

0.04

0.05

0.06

ab
so

lu
te

 e
rr

or
 in

 v
el

oc
ity

push-o� disturbance magnitude, mp

one st. dev. from
the mean error

max. error

mean error

statistics of 10,000 steps
for each disturbance level mp

robot
fails

mp = Mp ≈ 0.027

(b) Push-off perturbations

Figure 6.7: Simulations with random disturbances in controls. Statistics of simula-
tions analogous to those presented in Fig. 6.6a, but for different types of disturbances.
Here the robot’s controls are randomly perturbed, one at a time: (a) each step-size xst
is changed by µx =±mx, where µx is a given noise level; (b) each push-off is changed by
µp =±mp. The robot consistently fails when mx > Mx ≈ 0.082 and mp > Mp ≈ 0.27 respec-
tively. Each failure is due to the flight after the push-off. Mx and Mp are about 24% and
59% of the nominal values of the step-size and push-off correspondingly.

troller is reliable when

0 ≤ mp ≤ Mp, where Mp ≈ 0.027. (6.16c)

The largest tolerable noise Mp is approximately 59% of the nominal push-off p∗

defined by (6.2c). For larger push-off noises, the robot fails to complete 10,000

steps due to flying after one of the push-offs.

165

We also test recovery of the robot from large initial disturbances. We con-

sider two different initial velocities, θ̇0 = 0.01 and θ̇0 = 0.7. For each of them and

for each different noise level we run K = 1000 simulations, each N = 10 steps

long. In the case of the velocity perturbations µv,5 for both initial velocities the

robot consistently (in all 1000 runs) returns to a neighborhood of the nominal

velocity θ̇∗ for any mv ≤Mv. Similarly, when only the push-off perturbations are

considered, all noise levels in the range mp ≤Mp are tolerable for both initial ve-

locities. For the step-size perturbations µx, the tolerable disturbance levels are

mx ≤ 0.058 (≈ 0.7Mx) for the initial velocity 0.01 and mx ≤Mx for the initial veloc-

ity 0.7. In the case of the small initial velocity and mx > 0.058, some of the 1000

simulations fail due to the flight phase after the push-off.

In simulations discussed above, we allowed only one type of random dis-

turbances (µv, µx, or µp) at a time. The corresponding maximum tolerable noise-

levels Mv, Mx, and Mp change when the disturbances are combined. We now

run 10,000-step long simulations, each starting at the nominal velocity θ̇∗, for

various combinations of the noise levels in the velocity (mv), step-size (mx), and

push-off (mp). Fig. 6.8 shows the surface, corresponding to the maximum toler-

able combinations: for all triples (mv,mx,mp) on and below this surface the robot

in our trials completes 10,000 steps without a failure; for all (mv,mx,mp) above

the surface the robot fails. The points of intersection of the surface with the co-

ordinate axes correspond to the largest disturbances Mv, Mx, and Mp given by

(6.16).
5 The first perturbation µv is applied at the end of the first step.

166

0.1
0.08

0.06
0.04

0.02
0

0.1

0.05

0

0.03

0.02

0.01

0

velocity disturbance

mv

step-size disturbance
m

x

pu
sh

-o
�

 d
is

tu
rb

an
ce

m

p

mp = Mp ≈ 0.027

mv = Mv ≈ 0.092

mx = Mx ≈ 0.082

for disturbances above
this surface the robot fails

Figure 6.8: Largest tolerable disturbances. The simple model of Ranger with the pro-
posed controller (6.14) is simulated. At each midstance random perturbations are added
to the robot’s velocity and controls for the next step (step-size and push-off). Perturba-
tions’ magnitudes mv, mx, and mp are fixed in a single simulation. A series of 10,000-step
long simulations is run for various combinations (mv,mx,mp) of the magnitudes, starting
at the nominal velocity θ̇∗. Displayed is the surface of maximum tolerable disturbances.
For all (mv,mx,mp) on and below the surface the robot completes 10,000 steps with no
failures, for those above the surface the robot fails. The intersection of the surface with
the mv-axis is the largest velocity perturbation Mv ≈ 0.092 that is tolerable in the absence
of other perturbations (see Fig. 6.6a). Similarly, the intersections with the other axes are
Mx ≈ 0.082 (Fig. 6.7a) and Mp ≈ 0.027 (Fig. 6.7b). Mv, Mx, and Mp are about 48%, 23%,
and 59% of the nominal values of the velocity, step-size, and push-off respectively.

6.4 Controller design recipe

We designed in Section 6.2 a high-level walking controller for the Ranger robot.

The controller is based on a simple 2D IP model and takes into account stability,

robustness, energy efficiency, and simplicity. Here we summarize the controller

design procedure, extending it to a more general model of a planar biped.

A Represent the robot by a point-mass model. The center-of-mass motion of

any biped, we believe, is well approximated by point-mass models (see dis-

cussion in Section 2.5.4), such as the IP model (Chapter 3), LIP model (Chap-

ter 4), and SLIP model (Spring-Loaded Inverted Pendulum, [12, 28, 68]).

167

Ranger is modeled here as the simple 2D IP model to develop a controller

of its high-level behavior.

• Impose constraints on the simple model to account for actuator restrictions of the

real robot. For Ranger, such restrictions include limited actuation in the ankles

and limited leg-swinging abilities. These are represented by the step-size,

step-time, and push-off constraints in the 2D IP model.

•Define the Poincaré section of the simple model. For the IP model of Ranger, the

Poincaré section is at midstance, where the stance leg is vertical.

• All further controller design bullets assume the point-mass model of the robot.

B Determine the desired trajectory of the model. This may be a unique tra-

jectory or a range of trajectories satisfying a given goal. Some examples of

the goals are listed in Section 2.5.2. We suggest (and use for Ranger) the tra-

jectory that is approximately optimal with respect to the energy use of the

robot. The point where the desired trajectory crosses the Poincaré section of

the model, is the target region for the controller. For Ranger, the target is a

fixed nominal velocity at midstance.

C Compute the ∞-step controllable region extended by one of the controls.

The control law is first designed for one control, u1, and then for the other

control(s) of the model for the next step. The choice of u1 is not important. For

the IP model of Ranger, we choose u1 = xst, the next step-size. The extended

∞-step controllable region C̄u1
∞ is all combinations of controls u1 and initial

states, such that the target can be reached in one or more steps. C̄u1
∞ can be

computed numerically by the methods described in Section 2.7; for Ranger,

C̄u1
∞ is shown in Fig. 6.2. A curve inside the region C̄u1

∞ defines a control law

for u1. The bullets D and E below aim to find the ‘best’ controller curve inside

C̄u1
∞ .

168

D Define the controller optimization objectives. These include any desired

properties of the controller or the robot’s motion. We suggest (and use for

Ranger) the following. Speed-of-convergence (‘stability’): how fast the model

returns to the target after a disturbance (see Section 6.2.2). Robusntess: how

big of a disturbance the model can tolerate without failing (Section 6.2.3).

Energy cost: how much energy the robot requires for walking (Section 6.2.4).

• Express all objectives as functions of the state and control u1. For Ranger these

expressions are provided in the respective sections specified above.

• Evaluate each objective for all points in the region C̄u1
∞ . This calculation shows

which points in C̄u1
∞ are ‘better’ or ‘worse’ from the point of view of each

objective. In the case of Ranger: the speed-of-convergence is addressed by

Fig. 6.3a; the robustness is better for points farther from the boundaries of

C̄u1
∞ ; the energy cost is ‘relatively low’ for all points and, thus, is neglected.

E Draw a simple controller curve through the ‘best’ parts of the extended

∞-step controllable region. Some points in C̄u1
∞ may be ‘good’ for one op-

timization objective, but ‘bad’ for the other. The parts of C̄u1
∞ that are ‘best’

for the controller depend on the priorities between different objectives. Both

such priorities and the level of simplicity of the controller curve are manually

determined by the robot designer for the specific robot. Hence, the controller

curve is generally not unique. For Ranger, see the discussion on the choice

of the step-size controller in Section 6.2.5.

F Assume the bullet E controller for the first control u1, and repeat the bullets

C, D, and E for the next control u2. For Ranger, the second control parameter

is the push-off just before the next collision, u2 = p. The design steps C, D, E

are similar to those for the step-size controller u1 = xst. The related discussion

is provided in Section 6.2.6.

169

6.5 Discussion

There are two major steps in our controller design approach. First, we discover

all controllers of the robot that do not lead to a failure and which also allow

the motion to be stabilized around a given reference trajectory. That is, all con-

trollers that the robot designer may want to consider. Second, given this set of

controllers, various criteria, other than viability, can be used to pick the con-

troller that is ‘best’ suited for the given robot and locomotion tasks. Some ex-

amples of such criteria include robustness, energy use, and convergence to the

reference trajectory. Our approach reveals the trade-offs between the different

criteria or desired properties of the controller. It shows that certain control val-

ues or types of a controller (e.g. linear, quadratic, etc.) may be beneficial with

respect to one design objective, but less desirable with respect to another. For

example, recall the trade-off between large steps and fast convergence in the

case of Ranger (see Section 6.2.5). Thus, our design method suggests the ‘best’

controller for each given set of priorities between the controller objectives.

Bigger steps are good. As noted in Section 6.2.2, linear step-size controllers

should, for most target velocities and step-sizes, be avoided for Ranger due to

slow convergence to the nominal trajectory. Instead, in these cases, taking steps

that are larger than the nominal is preferable for any disturbance. This partially

agrees with Ranger’s ultra-marathon walk controller [9], which was also dis-

continuous at the nominal velocity, using larger steps (with nominal push-offs)

to slow down and nominal-size steps (with harder push-offs) to speed up.

The preference towards bigger steps can be explained as follows. In the case

of too-large initial velocities, taking a larger step causes a bigger ground im-

170

pact and a bigger momentum loss at the collision. Hence, a decrease in the

next-step velocity. For too-small initial velocities, consider the instant of colli-

sion (see Fig. 3.1 on page 65): the ground impact cancels all hip velocity along

the colliding leg. Therefore, only the normal (to the colliding leg) component

of the push-off impulse adds energy into the system. A larger step means a

larger angle between the legs at the collision and a larger normal component of

the push-off — thus, the push-off is more effective.6 Also, recall that if the hip

velocity along the colliding leg is too large after the push-off, the flight phase

begins, i.e. the robot fails. A smaller step increases the tangential component

of the push-off and, hence, of the hip velocity. Therefore, a larger step means a

larger range of viable push-offs.

We conclude: whether walking too slow or too fast, taking bigger steps increases

the range of viable push-offs and makes the push-offs more effective at controlling speed.

Some important future improvements of our controller design include: appli-

cation of the method to 3D robots and extension of the method to control the

target speed of the robot.

Extension to 3D models. The walking controller (6.14) was designed for the

specific robot, Cornell Ranger, based on its simple point-mass model. On the

other hand, discussion in Section 2.5.4 suggests that any biped’s motion resem-

bles that of a point-mass model. We believe, thus, that our controller design

ideas can be used for most robots.

The design recipe in Section 6.4 extends the method to a general model of
6 The push-off impulse still has to be larger than the nominal for the robot to speed-up.

171

a 2D biped. The same design method can be applied to 3D robots in a similar,

however more computationally demanding, way: a 3D dynamical system im-

plies both a higher-dimensional state space and a higher-dimensional control

space. For example, the 3D version of the IP model [84, 24] has two dynamic

variables at midstance and three control parameters each step (see Appendix E).

The controllable regions extended by one of the controls (bullet C of the design

procedure) are three-dimensional and, hence, computationally more expensive

to calculate (compared to a planar model case).7 Another consequence of a

higher-dimensional system is a more difficult graphical representation and anal-

ysis of the calculation results. For example, steps D and E of the design proce-

dure assume graphically determining which parts of the extended controllable

region (i.e. which control values) produce the ‘best’ controller. In the case of

Ranger, this results in drawing a controller curve inside the (two-dimensional)

extended controllable region. In contrast, for the 3D IP model the controller is a

surface inside the three-dimensional extended controllable region.

Control of the target speed. A weak point of our controller design is the

requirement of a specific target trajectory. The target (nominal) speed, which

the controller attempts to maintain at all times, is fixed. We would like to be

able to control the nominal speed of the robot. We would like to extend our

controller, such that the nominal speed is a parameter commanded to the robot

at each midstance.

One possible approach involves (linear) interpolation between several fixed-

target controllers. One can consider a number of different target speeds in a de-

sired range of the robot’s motion. Our controller design method can be used to

7 Note, that all calculations are offline.

172

define a separate controller for each of the targets. At each midstance, given a

desired nominal speed vt of the robot, the control values are computed by (lin-

ear) interpolation between two (or more) predefined controllers. This approach,

essentially a look-up table of controllers, requires significant human work.

A more promising approach to controlling the target is to consider the target

speed as an extra dimension of the extended state space of the model. A point in

the extended space, an extended state (q, vt, u), now consists of the state q, target

speed vt, and control(s) u. The control law for each of the controls u can be design

as a function of both q and vt by our controller design method. This approach to

a variable target speed is analogous to considering a higher-dimensional model,

such as a 3D model discussed above. As for the extension to 3D models, this

increase in dimensionality increases the control design calculations.

173

APPENDIX A

VIABILITY AND CONTROLLABILITY OF PASSIVE WALKERS

The Simplest Walking (SW) model is a 2D passive-dynamics model (Section 1.1.1),

first studied by Garcia et al. [27]. We use the SW model to discuss viability and

controllability of passive walkers.

The SW model has two rigid legs and all mass concentrated at the hip and at

the point feet, see Fig. A.1. The foot mass is assumed to be much smaller than

the mass at the hip; the effects of the swing-leg motions on the dynamics of

the stance leg are neglected. Instantaneous collisions are assumed plastic, with

no impulse acting on the hind leg from the ground. Scuffing during the swing

phase is neglected. The SW model is fully passive: it has no actuators and nor

sensors, and its motion is powered only by gravity.

Garcia et al. [27] showed that the SW model has two periodic gaits, one stable

and one unstable, on any slope γ for γ. 0.015 rad.1 The stable gait has retraction

of the swing leg as it hits the ground, but such retraction is not observed in the

unstable gait (instead, the swing leg moves forward as it collides). Such passive

retraction may partially explain the difference in stability of the gaits [95, 34].

Standing still in the vertical position can be considered as another unstable ‘pe-

riodic trajectory’ of the model.

For a fixed slope γ < 0.015, possible behaviors of the model are as follows.

When the initial state is exactly on one of the three periodic trajectories (one sta-

1 In fact, Garcia et al. [27] point out that there are infinitely-many other periodic gaits,
where the swing leg oscillates multiple times between heel-strikes. Such gaits are non-
anthropomorphic and we do not consider them here. However, these gaits can be treated in
our discussion here analogous, depending on their stability, to the stable gait qst or unstable gait
qun that we consider.

174

M

θ swing leg

g
l

stance leg

γ m
m

l

Figure A.1: Simplest walking model. A 2D bipedal model of a passive walker, first
described by Garcia et al. [27]. The model has two rigid legs and a point mass at the
hip and at each foot. The hip mass is assumed much larger than the foot mass. Effects
of the swing-leg motions on the dynamics of the stance leg are neglected. Collisions
are assumed plastic and instantaneous, with no impulse acting from the ground on the
hind leg. Scuffing during the swing phase is ignored. The model has no motors and no
sensors; it walks down a gentle slope powered by gravity alone.

ble and two unstable), the robot always remains on that trajectory. If the initial

state is in the basin-of-attraction of the stable periodic gait, the robot asymptot-

ically approaches that periodic gait. For all other initial states, the robot falls

down after a finite number of steps.

Following Garcia et al. [27], we define the Poincaré section of the SW model

to be at the instant just after collision. The dynamic state at that instant is de-

scribed by two variables: the angle and angular rate of the stance leg (the swing-

leg state is constrained by the impact conditions). All considerations below are

in terms of states of the robot just after collision.

Let qst, qun, and qss be the states corresponding, respectively, to the stable

periodic gait, unstable periodic gait, and standing still. Also, let the set Bst be

the basin-of-attraction of the stable gait; Bst includes the state qst. The viability

kernel V∞ is the set of all initial states (just after collision) such that the robot

never falls down. Hence, V∞ includes the basin-of-attraction Bst and two isolated

175

points qun and qss:

V∞ = Bst ∪ {qun, qss}. (A.1)

The ∞-step controllable region C∞ is all states, from where the robot reaches

a given target or approaches it asymptotically. Assume that the target is the

stable trajectory qst. Then, the ∞-step controllable region is equal to the basin-

of-attraction of the stable trajectory: C∞.st = Bst (Fig. 3.7). The region C∞,st and the

viability kernel V∞ differ only by two points qun (the unstable periodic gait) and

qss (standing still) — i.e. by a zero-measure set — which is consistent with our

‘Viable is Controllable’ claim in Section 2.3.1.

Assume that the target is standing still, as for Pratt’s capture regions [64]

(Section 1.2). The SW model does not reach the unstable standing-still point qss

from any initial state, other than qss itself. Therefore, the ∞-step controllable

region C∞,ss corresponding to the target qss, is a single point: C∞,ss = {qss}. The

regions C∞,ss and V∞ in this case differ by a non-trivial set, the basin-of-attraction

Bst (and the unstable gait qun). That is, the robot never comes to a stop unless

already standing, but it has a substantial region in the state space, from where

it keeps walking indefinitely. The standing-still target for the SW model is an

example of an exceptional case, when our ‘Viable is Controllable’ claim does not

work. This example was suggested by Koolen et al. [42].

176

APPENDIX B

SET-VALUED MAP REPRESENTATION OF EXTENDED CONTROLLABLE

REGIONS

Here we prove equation (2.14) on page 45 in the text, which expresses the ex-

tended n-step controllable region C̄n in terms of the extended controllability map

ˆ̄C.

We can say that the region C̄n includes all extended states for which the robot

is able to reach the target either in exactly n steps (i.e. C̄n includes all points in

ˆ̄Cn) or in n−1 or fewer steps (i.e. all points in C̄n−1). Therefore, similar to equation

(2.8) for the controllable regions, we write

C̄n = ˆ̄Cn ∪ C̄n−1. (B.1)

Sequentially applying the above equation to C̄n−1, C̄n−2, and so on, we get:

C̄n = ˆ̄Cn ∪ C̄n−1 = ˆ̄Cn ∪
ˆ̄Cn−1 ∪ C̄n−2 = ...

= ˆ̄Cn ∪
ˆ̄Cn−1 ∪ ... ∪

ˆ̄C2 ∪ C̄1 =

= ˆ̄Cn ∪
ˆ̄Cn−1 ∪ ... ∪

ˆ̄C2 ∪
ˆ̄C1 =

n⋃
k=1

ˆ̄Ck.

We used the equivalence (2.13): C̄1 = ˆ̄C1. The above formula says that the ex-

tended n-step controllable region C̄n consists of all extended states, from which

the target is reachable in exactly one step (the region ˆ̄C1), those which allow to

reach it in exactly two steps (ˆ̄C2), exactly three steps (ˆ̄C3), and so on.

Next, we express the strict controllable regions ˆ̄Cn in terms of the extended

controllable map ˆ̄C, according to (2.12):

C̄n = ˆ̄C(Ĉn−1) ∪ ˆ̄C(Ĉn−2) ∪ ... ∪ ˆ̄C(Ĉ1) ∪ ˆ̄C(C0) =

n−1⋃
k=0

ˆ̄C(Ĉk),

177

letting Ĉ0 ≡ C0. We use the linear property of the transformation ˆ̄C to get

C̄n = ˆ̄C(Ĉn−1 ∪ Ĉn−2 ∪ ... ∪ Ĉ1 ∪C0) = ˆ̄C

n−1⋃
k=0

Ĉk

 .
Notice, that the argument of ˆ̄C in the above equation, is a region in the state

space of the model. This region includes all target states (C0), all states from

which the robot can reach the target in exactly one step (Ĉ1), in exactly two

steps (Ĉ2), exactly three steps (Ĉ3), and so on — all the way up to exactly n − 1

steps (Ĉn−1). In other words, this region includes all initial states, from which

the robot is able to reach the target in (n − 1) or fewer steps. This is exactly the

description of the (n − 1)-step controllable region Cn−1. Therefore,

C̄n = ˆ̄C(Cn−1). (B.2)

178

APPENDIX C

SUPPLEMENTARY CALCULATIONS FOR THE 2D IP MODEL

C.1 Computation of the extended n-step controllable regions

We explain the numerical computation of the extended n-step controllable re-

gions C̄xst
n for our 2D IP model for n ≥ 2. The regions C̄p

n are computed in a

similar way. All calculations are performed in Matlab.

We use the iterative procedure described in Section 2.7.4 on page 60. For

each n, the region C̄xst
n is calculated according to (2.24), using the previously

found C̄xst
n−1, Cn−1, and Cn−2:

C̄xst
n = C̄xst

n−1 ∪

 ⋃
θ̇∈Cn−1\Cn−2

ˆ̄C(θ̇)

 , for n ≥ 2. (C.1)

We already know the regions C0, C1, and C̄xst
1 , which are required for the first

iteration (computation of C̄xst
2): the target C0 that we use is given by (3.17); the

regions C1 and C̄xst
1 are found in Section 3.2.2 and shown on Figs. 3.2a and 3.2b on

page 77 correspondingly. The four boundaries of C̄xst
1 (not including the vertical

axis) are given by equations (3.18).

We now describe how we numerically compute the union in the right-hand-

side of (C.1). For our calculations, we discretize the velocity axis: we use N =

1001 grid points vi, uniformly distributed in the interval 0 ≤ θ̇0 ≤ 1 (all non-

failed velocities, V0), such that v0 = 0 and vN−1 = 1.1 Next, consider a region A

in the (θ̇0, xst)-plane, which is convex in the xst direction — i.e. any line segment,

which connects two points in A and is parallel to the xst-axis, lies entirely in A.

1 N is chosen such that a single run of (C.1) takes (at most) on the order of seconds of com-
puter time, and the regions C̄xst

n appear ‘smooth’ to the ‘naked eye’.

179

We represent such region by two N-element vectors αmin and αmax corresponding

to the upper and lower bounds of the region. That is, the i-th elements αmin
i and

αmax
i of these vectors are, respectively, the smallest and largest step size xst, such

that the extended state (vi, xst) is in A. If no extended state is in A for a velocity

vi, we set the elements αmin
i and αmax

i to NaN (‘Not-a-Number’ value in Matlab).

The union C of two xst-convex sets A and B can be found using the min and

max functions:

γmin = min{αmin, βmin}, γmax = max{αmax, βmax},

where the vectors αmin, αmax represent the region A, the vectors βmin, βmax the re-

gion B, and γmin, γmax the union C = A ∪ B. Both the minimum and maximum

are taken element-wise. Note, that we assume here that the union C is also con-

vex in the xst direction. Similarly, we calculate the union C =
⋃K

k=1 Ak of several

different sets Ak by

γmin = min{α1,min, ... , αK,min}, γmax = max{α1,max, ... , αK,max}. (C.2)

We use the formula (C.2) above to numerically approximate the union in the

right-hand-side of (C.1). The union is taken over all discretized target velocities

vi in the region Cn−1 \ Cn−2. As before, we have to make the assumption that all

extended 1-step controllable regions ˆ̄C(vi), as well as all regions C̄xst
n , are convex

in the xst direction. This assumption is shown to hold true for the 1-step regions

ˆ̄C(vi), as one can see from Figs. 3.2 and 3.3. We visually check the validity of the

assumption for each of the regions C̄xst
n as we compute them.

After computation of C̄xst
n we also calculate the n-step controllable region Cn,

which is necessary for the next iteration of (C.1) (i.e. computation of C̄xst
n+1). Let

vectors αmin and αmax be the discrete representation of the region C̄xst
n . Then the

180

(discrete approximation of the) region Cn includes all velocities vi, for which

both elements αmin
i and αmax

i have numeric (not NaN) values.

C.2 Boundary of the extended∞-step controllable region C̄p
∞

Here we find an equation for and identify the motion corresponding to the up-

per boundary of the extended∞-step controllable region C̄p
∞ shown on Fig. 3.4c

on page 82. According to representation (2.23) of the extended controllable re-

gions, each C̄p
n is a union of the extended 1-step controllable regions ˆ̄C(q) for a

range of different target states q. Therefore, the region C̄p
∞ (the limit of C̄p

n as

n→∞) is such union too. Fig. C.1 shows the 1-step regions ˆ̄C(θ̇t) for the 2D IP

model, corresponding to several different target velocities: θ̇t = 0, 0.3, 0.6, 0.8,

and 0.9.2 The figure also shows the boundary of the region C̄p
∞.

As one can see from the figure, the top boundary of C̄p
∞ is formed by the

corner points (marked by the thick blue dots) of the regions ˆ̄C(θ̇t). These corner

points correspond (e.g. see Fig. 3.2c) to the motion, such that the tension in the

stance leg is zero both just before and just after the collision. Such motion is

represented by equations (3.18c) and (3.18d) satisfied simultaneously. Thus, we

get the system of equations:
p = cot 2θsw

√
2 − 2 cos θsw + θ̇2

0 −
1

sin 2θsw

√
2 − 2 cos θsw + θ̇2

t

cos θsw =
2+θ̇2

0
3

cos θsw =
2+θ̇2

t
3

Excluding θsw and θ̇t from the above system, we obtain

p =

√
3

2 + θ̇2
0

−
2 + θ̇2

0

3
. (C.3)

2 The cases θ̇t = 0, 0.3, and 0.8 correspond to the Figs. 3.3e, 3.2c, and 3.3f respectively.

181

0
0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 midstance
velocity

θ̇0

next
push-o�

p

target velocity

θ̇t = 0

θ̇t = 0.3

θ̇t = 0.6
θ̇t = 0.8 θ̇t = 0.9

C
_

∞
p

boundary of

extended 1-step controllable regions C
_̂
(θ̇t) for

di�erent target velocities θ̇t

zero leg tension just before and just after next collision

Figure C.1: Composition of the extended ∞-step controllable region C̄p
∞. The re-

gion C̄p
∞ is represented as a union of the extended 1-step controllable regions ˆ̄C(θ̇t)

corresponding to different target velocities θ̇t. Here the 1-step regions are shown for
θ̇t = 0, 0.3, 0.6, 0.8, and 0.9. The top boundary of C̄p

∞ is formed by the corners of the
regions ˆ̄C(θ̇t), which are marked by the thick blue dots. Each of these corners corre-
sponds to the motion with zero tension in the stance leg both just before and just after
the collision (see Fig. 3.2c).

Equation (C.3) above is the equation of the top boundary curve of the region

C̄p
∞.

C.3 Extended∞-step controllable region with two control axes

We compute the extended ∞-step controllable region C̄p,xst
∞ . The region C̄p,xst

∞

includes all combinations (θ̇0, xst, p) of initial states θ̇0 and two controls xst, p for

the next step, such that the robot can reach a given target velocity in a finite

number of steps or approach the target asymptotically. We use the example

target velocity (3.17).

182

According to the formula (2.23) on page 59, the extended n-step controllable

region C̄p,xst
n is the union of 1-step regions ˆ̄C(θ̇) corresponding to all different tar-

gets θ̇ in the (n− 1)-step controllable region Cn−1. At the same time, as n increases

the regions C̄p,xst
n approach C̄p,xst

∞ and the regions Cn approach C∞. Thus, C̄p,xst
∞ is

the union of all 1-step regions ˆ̄C(θ̇) corresponding to different θ̇ in C∞:

C̄p,xst
∞ =

⋃
θ̇∈C∞

ˆ̄C(θ̇).

The∞-step controllable region C∞ is given by (3.23) on page 84. Hence, we get

C̄p,xst
∞ =

⋃
0<θ̇<1

ˆ̄C(θ̇). (C.4)

We numerically compute the region C̄p,xst
∞ , as in (C.4), in a way analogous

to the calculation of the regions C̄xst
n in Appendix C.1. All calculations are per-

formed in Matlab. First, we discretize the velocity axis in the interval 0 ≤ θ̇0 ≤ 1

(N = 1001 points vi) and the step size axis in the interval 0 ≤ xst ≤ 1.5,3 (M = 1501

points x j). Next, for a fixed target velocity θ̇t and each discrete point (vi, x j) (i.e.

initial velocity θ̇0 = vi and step size xst = x j) we find the corresponding (unique)

push-off pi j from the Poincaré map (3.14). If θ̇t, vi, x j, and pi j do not satisfy at

least one of the walking constraints (3.15), the robot fails and we assign pi j =

NaN.4 Thus, for each push-off pi j with a numeric value, the triple (vi, x j, pi j) is

a 1-step controllable extended state of the robot. Hence, the N × M matrix of

push-offs P = {pi j} represents the (discretized) extended 1-step controllable re-

gion ˆ̄C(θ̇t) corresponding to the given target θ̇t.

We calculate such push-off matrix P for each target velocity θ̇t = vk in the in-

terval (0, 1) and call it Pk. These matrices Pk represent all different regions ˆ̄C(θ̇)

3 xst = 1.5 is the rounded up largest ∞-step viable step size, based on the results in Sec-
tion 3.2.4.

4 ‘Not-a-Number’ value in Matlab.

183

Full extended∞-step controllable region for the 2D IP model

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1 0

0.5

1.5
1

zero ground impact

zero leg tension just
after collision

zero leg tension just
before collisionne

xt
 p

us
h-

o�
,

p

midstance velocity, θ·

0 next step size, xst

(a) Front view of the region

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1 0

0.5

1.5
1

next step size, xst

midstance velocity, θ·

0

ne
xt

 p
us

h-
o�

,
p reaching the top with

zero velocity

zero initial velocity

zero push-o�

(b) Back surfaces of the region

Figure C.2: Full extended ∞-step controllable region for the 2D IP model. A point
in the axes on this figure is a triple (θ̇0, xst, p), consisting of an initial state (velocity θ̇0
at midstance) and two controls for the next step (step size xst and push-off p). The ex-
tended ∞-step controllable region C̄p,xst

∞ is all (θ̇0, xst, p) for which the robot is able to
either reach a given target exactly in a finite number of steps or to approach it asymp-
totically. The region C̄p,xst

∞ is the same for any target velocity θ̇t ∈ (0, 1) and is equal to
the extended viability kernel V̄ p,xst

∞ , all initial states and first-step controls for which the
robot can stay up for an arbitrarily large number of steps. The boundary surfaces of
C̄p,xst
∞ correspond to the walking constraints (3.15) of the planar IP model.

184

in the union (C.4). Similar to the formula (C.2) in Appendix C.1, we compute

the union by taking the element-wise minimum and maximum of all matrices

Pk:

Pmin = min{P1, ... , PN−2}, Pmax = max{P1, ... , PN−2}. (C.5)

For each combination (vi, x j) of the initial velocity and next step size, the N × M

matrices Pmin and Pmax give, correspondingly, the smallest and largest push-off

in the region C̄p,xst
∞ . Thus, Pmin and Pmax define the lower and upper boundary

surfaces of C̄p,xst
∞ in the (θ̇0, xst, p) axes — hence, defining the region C̄p,xst

∞ itself.

The extended ∞-step controllable region C̄p,xst
∞ for our 2D IP model is shown

on Fig. C.2. The boundaries of C̄p,xst
∞ correspond to the motions, for which

one of the walking constrains of the model is active (i.e. inequality turns

into equality, the robot ‘almost’ fails). The three visible surfaces on Fig. C.2a

represent the non-negative-ground-impact constraint (3.15a), the non-negative-

leg-tension-after-collision constraint (3.15c), and the non-negative-leg-tension-

before-collision constraint (3.15b). Notice, that the latter constraint (3.15b) is in-

dependent of the push-off p — therefore, the corresponding surface is a cylinder

parallel to the p-axis. The three boundaries on the back side of the region (see

Fig. C.2b), represent the non-negative-push-off constraint (3.15d), the assump-

tion of a non-negative initial velocity (we only consider walking forward), and

the requirement that the robot reaches the midstance at the end of each step.

The latter ‘reaching-the-top’ surface is the extended 1-step controllable region

ˆ̄C(0) corresponding to the zero target velocity.

Any point inside C̄p,xst
∞ corresponds to a specific motion over the next step,

which allows the robot to eventually reach the given target (3.17). However, re-

call from Section 3.2.3 that the∞-step controllable region C∞ is the same for any

185

target. Therefore, the formula (C.4), calculation (C.5), and, hence, the extended

∞-step controllable region C̄p,xst
∞ do not depend on the target velocity θ̇t (except

for θ̇t = 0 and θ̇t = 1). In fact, C̄p,xst
∞ is also (almost) equal to the extended viability

kernel V̄ p,xst
∞ . Indeed, according to (C.4), C̄p,xst

∞ includes all motions of the robot

corresponding to all possible non-failed velocities at the next step — that is, it

includes all non-failed steps of the robot (but for the cases θ̇0 = 0, 1). Therefore,

C̄p,xst
∞ is (almost) the same as the extended 1-step viable region V̄ p,xst

1 :

C̄p,xst
∞ ≈

except for some
boundary points

V̄ p,xst
1 . (C.6)

On the other hand, the region C̄p,xst
∞ is a subset of V̄ p,xst

∞ (because the target allows

periodic motion — see discussion in Section 3.2.4); and V̄ p,xst
∞ , in turn, is always

a subset of V̄ p,xst
1 :

C̄p,xst
∞ ⊂ V̄ p,xst

∞ ⊂ V̄ p,xst
1 . (C.7)

From relations (C.6) and (C.7) we conclude that the regions C̄p,xst
∞ and V̄ p,xst

∞ are

the same (but for θ̇0 = 0, 1):

C̄p,xst
∞ ≈

except for some
boundary points

V̄ p,xst
∞ . (C.8)

This results supports our ‘Viable is Controllable’ claim in Section 2.3.1 on page

25: in most cases, the ability to not fail is equivalent to the ability to reach any

given target.

The region C̄p,xst
∞ is the ‘full’ extended∞-step controllable region for our 2D IP

model, in that it considers all control parameters of the model. The projections

of C̄p,xst
∞ onto the (θ̇0, xst) and (θ̇0, p) coordinate planes are, correspondingly, the

extended regions C̄xst
∞ and C̄p

∞ shown on Figs. 3.4b and 3.4c on page 82. Similarly,

the projections of the reaching-the-top boundary surface of C̄p,xst
∞ (the extended

186

1-step controllable region ˆ̄C(0)) are the regions C̄xst
1 and C̄p

1 presented on Figs. 3.3c

and 3.3e on page 80.

C.4 Controllability for large target speeds

For the 2D IP model, the ‘Two-step controllability’ claim on page 27 breaks in

the cases of large target velocities (roughly θ̇t > 0.8) and significant push-off

limitation (‘small’ maximum allowed push-off). In such cases the robot may

have to take three or more steps to return to the target.

Fig. C.3 shows the controllable and extended controllable regions for the tar-

get θ̇t = 0.95. For small initial velocities, e.g. θ̇0 = 0.1, the no-flying requirement

prevents the robot from being able to reach the target in fewer than three steps.

The case of restrictive push-off limits is presented in graphs (a), (c), (e) of

Fig. C.4. The figure assumes the target θ̇t = 0.5, the minimum allowed step-

time tst,min = 0.5, and the maximum allowed push-off pmax = 0.25.5 The push-off

limit restricts the amount of energy that can be added into the system in one

step, thus requiring the robot to take several steps to recover from small veloc-

ities. A larger bound pmax on the maximum push-off would make it possible

to gain speed faster, hence rendering the two-step regions closer to the ∞-step

regions. For example, graphs (b), (d), (f) of Fig. C.4 assume pmax = 0.5 — in this

case C2 ≈C∞, C̄xst
2 = C̄xst

∞ , and C̄p
2 = C̄p

∞, i.e. the two-step controllability is (almost)

equivalent to the∞-step controllability.

5 For comparison, the Cornell Ranger robot [9] has an estimated pmax = 0.3 and walks at an
average speed θ̇= 0.19 (see Chapter 6.1).

187

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
zero leg tension just before next collision

midstance
velocity

θ̇0

next step
size

xst

possible to reach target
within one step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C1
C2

C∞

possible to reach target
within two steps

possible to reach target

midstance
velocity

θ̇0

0
0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

zero leg tension just before and just after next collision

midstance
velocity

θ̇0

next
push-o�

p

(a) Controllable regions

(b) Extended
controllable regions:

step size controls

(c) Extended
controllable regions:

push-o� controls

C
_

1
xst

C
_

2
xst

C
_

3
xst

C
_

4
xst

C
_

∞
xst

zero collision im
pact

zero collision impact

0.95target velocity

zero leg tension just after next collision

zero leg tension just after next collision

C
_

1
p

C
_

4
p

C
_

3
p

C
_

2
p

C
_

∞
p

zero leg tension just after next collision

zero collision impact

zero collision impact

0.95target velocity

0.95target velocity

Figure C.3: Controllability of 2D IP model for large target speed. This figure is
analogous to Fig. 3.4 on page 82, but for a different target velocity θ̇t. Here θ̇t = 0.95.
For target velocities close to 1 (the largest viable speed), as opposed to smaller θ̇t, the
two-step controllable regions C2, C̄xst

2 , and C̄p
2 do not cover most of the corresponding

∞-step regions C∞, C̄xst
∞ , and C̄p

∞.

188

max. allowed push-off 0.25 max. allowed push-off 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

target velocity
midstance

velocity

θ̇0

next step
size

xst

V0
all non-failed states C1

possible to reach
target in two steps

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
target velocity

midstance
velocity

θ̇0

(a) Controllable regions

00

0.1

0.2

0.3

0.4

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
target velocity

midstance
velocity

θ̇0

next
push-o�

p

(c) Extended controllability: step sizes

(e) Extended controllability: push-offs

C
_

1
xst

C
_

2
xstC

_

3
xstC

_

4
xst

C
_

5
xst

C
_

∞
xst

min. allowed step-time

max. allowed push-o�

zero ground impact

zero leg tension just
before next collision

0.5

C
_

1
p

C
_

2
p

C
_

3
pC

_

4
pC

_

5
p

max. allowed push-o�

zero ground impact

min. allowed step-time

zero leg tension just
before next collision

C
_

∞
p

C2

C∞

possible to reach target

possible to
reach target in

one step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

target velocity
midstance

velocity

θ̇0

next step
size

xst

V0
all non-failed states

possible to reach
target in two steps

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
target velocity

midstance
velocity

θ̇0

(b) Controllable regions

00

0.1

0.2

0.3

0.4

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 midstance
velocity

θ̇0

next
push-o�

p

(d) Extended controllability: step sizes

(f) Extended controllability: push-offs

C
_

1
xst

C
_

2
xst C

_

∞
xst

min. allowed step-time

zero leg tension just
before next collision

0.5
max. allowed push-o�

zero leg tension just
before next collision

C∞ = C2 ≈ C1

possible to reach target
possible to

reach target in
one step

max. allowed push-o�

max. allowed push-o�

zero ground impact

C
_

1
p

C
_

2
p

zero ground impact

min. allowed step-time

C
_

∞
p

target velocity

Figure C.4: Controllability of the 2D IP model for different push-off limitations.
Analogous to Fig. 3.6 on page 90, this figure shows the controllable and extended con-
trollable regions of the 2D IP model with limited actuation. The actuator limitations are
the maximum allowed push-off pmax and the minimum allowed step-time tst,min. The
graphs (a), (c), (e) on the left assume pmax = 0.25, while the graphs (b), (d), (f) on the
right pmax = 0.5. For all graphs tst,min = 0.5 and the target velocity is θ̇t = 0.5. Larger push-
offs improve controllability of the model and make the ∞-step controllability (regions
C∞, C̄xst

∞ , C̄p
∞) equivalent to the two-step controllability (regions C2, C̄xst

2 , C̄p
2).

189

APPENDIX D

SUPPLEMENTARY CALCULATIONS FOR CORNELL RANGER

D.1 Leg swinging limitations

Here we find a rough estimate of the minimum step time tst,min for the Ranger

robot. The minimum allowed step time (time tst from midstance to heel-strike)

is one of the constraints we use in the IP-model proxy for Ranger in Section 6.1.2

on page 137.

There are two limitations of Ranger which constrain how fast a step can be

made. One is the limited torque the hip motor can generate to rotate the swing

leg. We use the high-fidelity model of Ranger (including the model of the elec-

tric hip motor) [9] to estimate how the hip motor limitations affect tst,min. We do

a series of simulations as follows. We hold the stance leg fixed and allow the

swing leg to rotate around the hip joint, without colliding with the ground. The

swing leg is initially placed at an angle φ0 with the vertical and has initial an-

gular rate φ̇0; both φ0 and φ̇0 vary between simulations. Each simulation is run1

until the instant when the leg reaches the angle −φ0 — we use such simulation

as a proxy for the swing leg’s motion during the stance phase of the robot. The

length of the corresponding step of the robot, according to (3.3), is xst = −2 sin φ0.

In each simulation, we supply the maximum current allowed to the hip motor,

changing its sign at ‘midstance’, when φ = 0. The step time tst is recorded as one

half of the total duration of the simulation.

Thus, for each initial rate φ̇0, we compute the step time tst as a func-

1 All calculations are performed in Matlab using the ode45 solver.

190

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

st
ep

 ti
m

e,
 t s

t

step size, xst

foot �ip-up �ip-down time

swing-leg rotation time

small initial velocity

large initial velocity

(each curve is di�erent initial velocity)

(φ̇0
 = 0)

(φ̇0
 = 1)

Figure D.1: Step-time restrictions of Ranger. The step time is defined as the time
from midstance to the next heel-strike. The family of curves shows the minimum time
required for the hip motor to move the swing leg to a desired position defined by the
step-size xst. Each curve corresponds to a different initial angular rate of the leg. The
thick horizontal line shows the minimum time required for the swing foot to flip up
and flip down (necessary to avoid scuffing). Based on this figure, the minimum allowed
step-time tst,min is set to 0.4.

tion of the step size xst. This function is shown by an individual curve on

Fig. D.1, with different curves corresponding to different initial rates in the

range 0≤ φ̇0 ≤ 1. The considered range of step-sizes is 0< xst ≤ 1.5. All values

are non-dimensionalized. The figure shows that the biggest step time tst ≈ 0.45

occurs for a small initial velocity and large step-size. At the same time, there

is no significant dependence of the step time on the initial velocity. That is, the

effects of the power provided by the hip motor seem to be larger than those by

the gravity.

The second step-time limitation of Ranger is related to scuffing avoidance.

Each step, Ranger has to flip up and flip down the foot on the swing leg in

order to avoid the scuffing the ground while in swing. By running physical ex-

periments on the robot, we find that at least 0.25 sec is required to complete the

191

flip-up flip-down motion. This corresponds to about 0.8 in our non-dimensional

units, and, hence, to the step time tst ≈ 0.4. This step time is shown by the thick

horizontal line on Fig. D.1.

We can see from the figure that in most cases (except for large steps) the foot

flipping time dominates the time required to swing the leg. On the other hand,

the step-size xst of the robot is bounded from above by (6.1b). Therefore, we

choose the flip-up flip-down time as the fixed minimum step-time, for all initial

velocities and all step sizes:

tst,min = 0.4. (D.1)

D.2 Push-off limitations

We find a rough estimate pmax of the maximum push-off allowed in the IP-model

proxy of Ranger (see equation (6.1a) on page 140).

We use the high-fidelity model of Ranger and run its simulation along the

nominal trajectory used during the 65.2 km walk.2 For this trajectory, the

pushing-off is done during a 0.1-second-long interval shortly before and dur-

ing the double stance motion [9]. In our simulation, we replace the nominal

current to the ankle motor during the push-off by the (constant) maximum cur-

rent allowed to the motor. For the resulting motion, we record the increase in

the total mechanical energy during the push-off:

∆E ≈ 0.04 (D.2)

in a non-dimensional form.
2 The Matlab simulation was developed and provided by S. Javad Hasaneini.

192

We say that the maximum push-off pmax in the IP model of Ranger is one

which produces the energy input ∆E. The hip velocities~v− and~vp just before and

just after the push-off in the IP model are given by (3.7b) and (3.5a) correspond-

ingly. Because there is no change in the potential energy, the total mechanical

energy jump due to the push-off is

1
2

v2
p −

1
2

(v−)2 =
1
2

p2. (D.3)

Therefore, for the maximum push-off pmax we have

1
2

p2
max = ∆E ⇒

pmax =
√

2∆E ≈ 0.3. (D.4)

Note, that (D.2) is a rough estimate of Ranger’s hardest push-off. The true max-

imum value of ∆E (hence, of pmax too) may be higher — for example, if a dif-

ferent (non-constant) function of the ankle-motor current or a different push-off

timing is used. However, our results in Section 6.1.3 show that the push-off

bound (D.4) above does not affect controllability of the IP model of Ranger (see

Fig. 6.2). Furthermore, the controller we design for Ranger in Section 6.2 only

requires push-offs p < 0.1 (see equation (6.4b)). Hence, a (possible) more liberal

push-off constraint would not alter the results of our controller design.

D.3 Energy efficiency of the step-size controller

Here we estimate energy efficiency of our IP model of Ranger for different initial

velocities and step sizes. The estimations justify our approach to efficiency of

the step-size controller in Section 6.2.4 on page 150.

193

We define efficiency by the total cost of transport of the robot, TCOT, as in

equation (6.9). We closely follow calculations for Ranger in [9] to approximate

the TCOT for our model. For Ranger, the cost of transport is divided into three

different terms:

TCOT =
Efixed + Efoot-flip + Ewalk

Mg · d
, (D.5)

where M = 9.91 kg is the total mass of the robot, g acceleration due to gravity,

and d the total walking distance. Efixed is the electrical overheads cost — this is the

energy required to power all electronics in Ranger, such as microprocessors and

sensors. The power running the electronics is assumed constant, and, hence,

Efixed is proportional to time: Efixed = Pfixed t, with Pfixed = 5.15 W. Efoot-flip is the

work done to flip the swing foot up and down between collisions in order to

avoid scuffing. The foot-flip work over a single step is independent of both the

step length and step duration, and is estimated to be 1.06 J for Ranger. The last

term, Ewalk, is the work done by all motors on the robot to power the walk, not

including the foot-flip motion. For our simple model of Ranger, we calculate

Ewalk for a single step as the mechanical energy added to the system by the

push-off. This energy is given by expression (D.3) in the non-dimensional form.

Hence, Ewalk = 1
2 p2 · Mgl in the energy units, where l = 0.96 m is the leg length.

Plugging Efixed, Efoot-flip, and Ewalk back into equation (D.5), we write the TCOT

of our model over one step as

c1 =
1.06 + 5.15 ·

√
l
gTst + 0.5Mglp2

Mglxst

≈
0.011 + 0.017 Tst + 0.5p2

xst
(D.6)

where
√

l
gTst is the duration of the step (midstance-to-midstance time) in sec-

onds, and lxst is the step-size in meters. For a given initial velocity θ̇0 and con-

trols xst, p, the non-dimensional step duration Tst is found by integrating the

194

0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

0.35

nominal
step size

levels of TCOT for stable steps
TCOT = energy used by robot

weight × distance traveled

0.19nominal velocity
0.2

midstance velocity, θ̇0

nominal trajectory of Ranger

ne
xt

 s
te

p
si

ze
, x

st

colored region is
C

_

∞
xst = C

_

2
xst

0.05

0.11

0.08

0.14

0.2
0.3

0.5
1.0

0.270.04 4.00.15 1.5 2.75

boundary of C
_

1
xst

Figure D.2: Energy efficiency of step-size controllers for Ranger. For each perturbed
velocity θ̇0 and next step-size xst the energy cost of the next step is considered. We only
consider the steps that bring the robot closer to the nominal velocity θ̇∗. The Total Cost
Of Transport (TCOT) is the total energy used by the robot divided by the robot’s weight
and traveled distance. For a given θ̇0 and xst the energy cost cmin

1 is the smallest TCOT
over all push-offs. The color code and contour lines show the values of cmin

1 for all points
in the extended∞-step controllable region C̄xst

∞ . The energy cost grows ‘rapidly’ only for
small steps with low velocities.

equations of motion (3.1) of the model.

We compute the cost c1 for various perturbed steps of our model. We con-

sider all velocities θ̇0 and step sizes xst inside the extended ∞-step controllable

region C̄xst
∞ (see Fig. 6.2b). For each point (θ̇0, xst) there is a range of viable push-

offs p, each bringing the robot to a different velocity θ̇1 at the next midstance.

However, because the step-size controller tries to stabilize the motion around

the nominal velocity θ̇∗ (see Section 6.2.2), we only consider those push-offs,

which bring the robot closer to the nominal velocity. That is, we only consider

values of p, such that |θ̇1−θ̇
∗| ≤ |θ̇0−θ̇

∗|. For each point (θ̇0, xst) we find the smallest

cost c1 over the considered range of p and call it cmin
1 :

195

The values of cmin
1 for all points in the region C̄xst

∞ are shown by the color

scheme and level lines in Fig. D.2. For initial velocities smaller than the nom-

inal θ̇∗, positive energy has to be supplied to the system — hence, the cost cmin
1

is higher than c∗1 ≈ 0.12 corresponding to the nominal trajectory. Similarly, the

cost is lower for velocities larger than θ̇∗. From the point of view of energy ef-

ficiency, it suffices for the step-size controller to avoid taking short steps with

small velocities. Such steps correspond to the bottom-left corner of C̄xst
∞ where

the cost cmin
1 is ‘significantly’ higher than the nominal c∗1. However, recall from

Section 6.2.2 that such steps are undesirable due to slow return to the nominal

trajectory: for any perturbation we prefer to take possibly larger steps as they

allow faster return. Thus, we do not take energy efficiency into account in the

design of a step-size controller for Ranger, except for using the energy-efficient

nominal trajectory (6.2).

196

APPENDIX E

INVERTED PENDULUM IN 3D

We studied the planar Inverted Pendulum (IP) model and its controllability in

Chapter 3. Here we begin to extend this model to 3D. We describe some possible

locomotion goals for the 3D model, and discuss, by counting arguments, the

model’s possible controllability for these goals.

E.1 Model

The IP model has a point mass at the hip and two massless rigid legs (see

Fig. E.1a). We assume that the swing leg can be instantaneously moved into

any desired position without influencing the dynamics of the stance leg. As per

the 2D model, restrictions on swing time can be added later. The collisions are

assumed instantaneous, with the hind leg leaving the ground immediately after

the collision (no double stance). At the instant just before each collision, a con-

trolled push-off impulse is applied along the stance leg. There are three control

parameters at each step: the push-off magnitude p and the stepping location

defined by two numbers (e.g. positions xst and zst as in Fig. E.1a, or local coor-

dinates). The dynamic state of the stance leg is four-dimensional: two angles

defining orientation of the leg and two corresponding angle rates.

Midstance is the point along the trajectory of the robot where the potential

energy has a local maximum or, equivalently, where the velocity of the hip is

either horizontal or zero. At midstance there is one condition on the robot state,

so the midstance state is three-dimensional. We define the three midstance vari-

197

y

z

x

push-o� along
stance leg

(just before collision)

p

l

x

z

swing leg

xst

zst

m

next stepping
location

step length step width

g

(a) Model, controls

y

z

x

φ

γ

v

x

z

m

(swing leg is not shown)

g

velocity direction

horizontal
velocity

lean angle

(b) State at midstance

Figure E.1: 3D Inverted Pendulum (IP) model of walking. (a) The 3D IP model is
an extension of the planar IP model shown in Fig. 2.5a on page 29. The model has a
point mass at the hip and two massless rigid legs. Motions of the swing leg do not
affect the dynamics of the stance leg. Collisions are assumed instantaneous; a push-
off impulse is applied along the stance leg just before each collision. The controls are
the push-off amount p and the stepping location defined by the positions xst and zst
of the footstep. x, y, z is a fixed global coordinate system. (b) The midstance of the
3D IP model is at a point of local maximum of the hip height above the ground. The
hip velocity is horizontal at midstance. The dynamic state of the model at midstance
is defined by three values: the lean angle γ between the stance leg and the vertical, the
velocity magnitude v, and the velocity direction (heading) ϕ. A local coordinate system,
useful for considering balance without navigation, can be defined by the origin at the
stance foot and the directions of y and v. In this local system, we can name the footstep
positions xst and zst the step length and step width, respectively.

ables to be the lean angle γ between the stance leg and the vertical, the hip-

velocity magnitude v, and the hip-velocity heading ϕ. An example of midstance

is shown in Fig. E.1b.

Thus, the 3D IP model has three state variables at midstance and three con-

trol parameters at each step. Our central goal is that the robot never enters the

flight phase and never falls down — such cases are failures. At this point, we do

not yet consider actuation constraints of the model, i.e. we do not yet impose

upper bounds on push-off nor minimum possible swing times.

198

E.2 Example goals

We consider a few possible example goals for locomotion for the 3D IP model.

For each goal, we use the counting argument (number of equations equals the

number of unknowns, see Section 5.4, page 131) to guess at the controllability

of the model for that goal.

(i) Standing upright with zero velocity, as for Pratt’s capture regions [64].

This goal is defined by two target values at midstance (number of re-

strictions on the goal state is mgoal = 2): lean angle γ = 0 and velocity

v = 0. The number of control parameters is three (mcont = 3). Hence,

we have mcont > mgoal. By the counting argument, there should be a non-

trivial region in the state space (this is the one-step controllable region

C1) from where the robot can reach the target within one step. Because

mcont = mgoal + 1, there should be a one-parameter family of control actions

that bring the robot to the goal.

(ii) An arbitrary state at midstance. This yields three target values (the lean

γ, speed v, and heading ϕ) and we get mcont = mgoal = 3. Therefore, the

counting argument suggests that there is a non-trivial one-step controllable

region C1, from where the goal can be reached within one step with appro-

priate control actions. Generically, the control actions should be unique for

each initial state in C1 (no redundant controls).

(iii) An arbitrary state at midstance and the stance foot is at a given point on

the ground. This gives us five target values: three values (γ, v, ϕ) describe

the dynamic state at midstance and two (x, z) define the desired foot loca-

tion. Hence, mcont = 3 < mgoal = 5, but 2 ∗ mcont = 6 > mgoal = 5. That is, at

199

least two steps are generally required to reach such a goal. We also expect

that there is a non-trivial two-step controllable region, if the target foot lo-

cation is ‘sufficiently close’ to the initial foot position. For each point in the

controllable region, we expect a one-dimensional family of control actions

that bring bring the robot to the target.

We perform both analytical and numerical calculations (not presented here)

to find the one-step controllable region C1 of the 3D IP model for various targets.

The calculations are similar to those we use for the planar IP model in Chapter 3.

With no loss in generality, we assume the initial heading to be zero, i.e. that the

initial velocity is in the positive x-direction. For a given target, C1 is the region

in the (γ0, v0)-plane which includes all initial lean angles γ0 and velocities v0 such

that the target can, with appropriate controls, be reached within one step. We

consider different target states at midstance that have a zero lean γt = 0 (i.e.

vertical position), velocity in the range 0 ≤ vt ≤ 0.3, and heading 0 ≤ ϕt ≤ 1.2.1

For each such target, our calculations show that the corresponding region C1

is non-trivial (has a non-zero area). Thus, we confirm the conclusions in the

examples (i) and (ii) above based on the counting argument.

Future important analysis of the 3D IP model follows the steps of our inves-

tigations of the planar IP model (Chapters 3 and 6): computation of the n-step

controllable and extended controllable regions; analysis of the model with lim-

ited actuation; designing a maximally robust walking controller for a 3D robot

based on the extended controllability of the 3D IP model.

1 All numbers are non-dimensionalized using the constants m, l, and g for the hip mass, fixed
leg length, and acceleration due to gravity, respectively.

200

BIBLIOGRAPHY

[1] RM Alexander. Optimization and gaits in the locomotion of vertebrates.
Physiol. Rev, 69(1199-1227):29–64, 1989.

[2] Jean-Pierre Aubin. A survey of viability theory. SIAM Journal on Control
and Optimization, 28(4):749–788, 1990.

[3] Jean Pierre Aubin, Alexandre M Bayen, and Patrick Saint-Pierre. Viability
theory: new directions. Springer, 2011.

[4] Jean Pierre Aubin and Arrigo Cellina. Differential inclusions: set-valued maps
and viability theory. Springer-Verlag New York, Inc., 1984.

[5] J.P. Aubin. Viability theory. systems & control: Foundations & applications,
1991.

[6] Christine Azevedo, Philippe Poignet, and Bernard Espiau. Moving horizon
control for biped robots without reference trajectory. In Robotics and Au-
tomation, 2002. Proceedings. ICRA’02. IEEE International Conference on, vol-
ume 3, pages 2762–2767. IEEE, 2002.

[7] Alexandre M Bayen, Eva Crück, and Claire J Tomlin. Guaranteed over-
approximations of unsafe sets for continuous and hybrid systems: solving
the hamilton-jacobi equation using viability techniques. In Hybrid Systems:
Computation and Control, pages 90–104. Springer, 2002.

[8] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1.
Athena Scientific Belmont, MA, 1995.

[9] P.A. Bhounsule. A controller design framework for bipedal robots. PhD thesis,
Cornell University, 2012.

[10] Pranav A Bhounsule. Control of a compass gait walker based on energy
regulation using ankle push-off and foot placement. Robotica, 2014.

[11] Cornell Biorobotics and Locomotion Lab website. http://ruina.tam.
cornell.edu/research/topics/locomotion_and_robotics/
ranger/Ranger2011.

[12] Reinhard Blickhan. The spring-mass model for running and hopping. Jour-
nal of biomechanics, 22(11):1217–1227, 1989.

201

http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/ranger/Ranger2011
http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/ranger/Ranger2011
http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/ranger/Ranger2011

[13] AC Bobbert. Energy expenditure in level and grade walking. Journal of
Applied Physiology, 15(6):1015–1021, 1960.

[14] Thomas Buschmann, Sebastian Lohmeier, Mathias Bachmayer, Heinz Ul-
brich, and Friedrich Pfeiffer. A collocation method for real-time walking
pattern generation. In Humanoid Robots, 2007 7th IEEE-RAS International
Conference on, pages 1–6. IEEE, 2007.

[15] Sean G Carver, Noah J Cowan, and John M Guckenheimer. Lateral stability
of the spring-mass hopper suggests a two-step control strategy for running.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 19(2):026106, 2009.

[16] A.I. Chaudhry. Topics in robot locomotion: state estimation and feasible path
generation for wheeled and legged robots. PhD thesis, Cornell University, 2015.

[17] Christine Chevallereau, ABBA Gabriel, Yannick Aoustin, Franck Plestan,
Eric Westervelt, Carlos Canudas De Wit, Jessy Grizzle, et al. Rabbit:
A testbed for advanced control theory. IEEE Control Systems Magazine,
23(5):57–79, 2003.

[18] Christine Chevallereau, Jessy W Grizzle, and Ching-Long Shih. Asymp-
totically stable walking of a five-link underactuated 3-d bipedal robot.
Robotics, IEEE Transactions on, 25(1):37–50, 2009.

[19] Michael J Coleman and Andy Ruina. An uncontrolled walking toy that
cannot stand still. Physical Review Letters, 80(16):3658, 1998.

[20] S.H. Collins, M. Wisse, and A. Ruina. A three-dimensional passive-
dynamic walking robot with two legs and knees. The International Journal
of Robotics Research, 20(7):607–615, 2001.

[21] Steve Collins, Andy Ruina, Russ Tedrake, and Martijn Wisse. Efficient
bipedal robots based on passive-dynamic walkers. Science, 307(5712):1082–
1085, 2005.

[22] Steven H Collins and Andy Ruina. A bipedal walking robot with efficient
and human-like gait. In Robotics and Automation, 2005. ICRA 2005. Pro-
ceedings of the 2005 IEEE International Conference on, pages 1983–1988. IEEE,
2005.

[23] Guillaume Deffuant, Laetitia Chapel, and Sophie Martin. Approximating

202

viability kernels with support vector machines. Automatic Control, IEEE
Transactions on, 52(5):933–937, 2007.

[24] J Maxwell Donelan, Rodger Kram, et al. Mechanical and metabolic de-
terminants of the preferred step width in human walking. Proceedings of
the Royal Society of London. Series B: Biological Sciences, 268(1480):1985–1992,
2001.

[25] A. Forner Cordero, H. Koopman, and FCT Van der Helm. Multiple-step
strategies to recover from stumbling perturbations. Gait & posture, 18(1):47–
59, 2003.

[26] Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive
control: theory and practicea survey. Automatica, 25(3):335–348, 1989.

[27] Mariano Garcia, Anindya Chatterjee, Andy Ruina, and Michael Coleman.
The simplest walking model: stability, complexity, and scaling. Journal of
biomechanical engineering, 120(2):281–288, 1998.

[28] Hartmut Geyer, Andre Seyfarth, and Reinhard Blickhan. Spring-mass run-
ning: simple approximate solution and application to gait stability. Journal
of theoretical biology, 232(3):315–328, 2005.

[29] A.S. Grewal. Model reduction and controller design simplification for bipedal
robots. PhD thesis, Cornell University, 2015.

[30] Jessy W Grizzle, Gabriel Abba, and Franck Plestan. Asymptotically sta-
ble walking for biped robots: Analysis via systems with impulse effects.
Automatic Control, IEEE Transactions on, 46(1):51–64, 2001.

[31] JW Grizzle. Remarks on event-based stabilization of periodic orbits in sys-
tems with impulse effects. In Second International Symposium on Communi-
cations, Control and Signal Processing. Citeseer, 2006.

[32] Seyed Javad Hasaneini. Energy Efficient Bipedal Locomotion. PhD thesis,
2014.

[33] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka. The development of
honda humanoid robot. In Robotics and Automation, 1998. Proceedings. 1998
IEEE International Conference on, volume 2, pages 1321–1326. IEEE, 1998.

203

[34] Daan GE Hobbelen and Martijn Wisse. Swing-leg retraction for limit cy-
cle walkers improves disturbance rejection. Robotics, IEEE Transactions on,
24(2):377–389, 2008.

[35] A. L. Hof, S. M. Vermerris, and W. A. Gjaltema. Balance responses to lat-
eral perturbations in human treadmill walking. The Journal of Experimental
Biology, 213(15):2655–2664, 2010.

[36] A.L. Hof. The ’extrapolated center of mass’ concept suggests a simple con-
trol of balance in walking. Human movement science, 27(1):112–125, 2008.

[37] M.A. Hollands, D.E. Marple-Horvat, S. Henkes, and A.K. Rowan. Human
eye movements during visually guided stepping. Journal of motor behavior,
27(2):155–163, 1995.

[38] Dynamic Walking Conference 2010 J.Pratt. http://techtv.
mit.edu/collections/locomotion:1216/videos/8036-
dynamic-walking-2010-jerry-pratt-humanoid-disturbance-
recovery-with-limited-available-footholds.

[39] Thomas Kailath. Linear systems, volume 1. Prentice-Hall Englewood Cliffs,
NJ, 1980.

[40] S. Kajita, O. Matsumoto, and M. Saigo. Real-time 3d walking pattern gen-
eration for a biped robot with telescopic legs. In Robotics and Automation,
2001. Proceedings 2001 ICRA. IEEE International Conference on, volume 3,
pages 2299–2306. IEEE, 2001.

[41] Shuuji Kajita and Kazuo Tani. Study of dynamic biped locomotion on
rugged terrain-derivation and application of the linear inverted pendulum
mode. In Robotics and Automation, 1991. Proceedings., 1991 IEEE International
Conference on, pages 1405–1411. IEEE, 1991.

[42] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt. Capturability-
based analysis and control of legged locomotion, part 1: Theory and ap-
plication to three simple gait models. The International Journal of Robotics
Research, 31(9):1094–1113, 2012.

[43] A.D. Kuo. Energetics of actively powered locomotion using the simplest
walking model. Journal of biomechanical engineering, 124:113, 2002.

[44] Arthur D Kuo. The six determinants of gait and the inverted pendu-

204

http://techtv.mit.edu/collections/locomotion:1216/videos/8036-dynamic-walking-2010-jerry-pratt-humanoid-disturbance-recovery-with-limited-available-footholds
http://techtv.mit.edu/collections/locomotion:1216/videos/8036-dynamic-walking-2010-jerry-pratt-humanoid-disturbance-recovery-with-limited-available-footholds
http://techtv.mit.edu/collections/locomotion:1216/videos/8036-dynamic-walking-2010-jerry-pratt-humanoid-disturbance-recovery-with-limited-available-footholds
http://techtv.mit.edu/collections/locomotion:1216/videos/8036-dynamic-walking-2010-jerry-pratt-humanoid-disturbance-recovery-with-limited-available-footholds

lum analogy: A dynamic walking perspective. Human movement science,
26(4):617–656, 2007.

[45] Sergey Levine and Vladlen Koltun. Guided policy search. In Proceedings of
The 30th International Conference on Machine Learning, pages 1–9, 2013.

[46] Hun-ok Lim, Yoshiharu Kaneshima, and Atsuo Takanishi. Online walk-
ing pattern generation for biped humanoid robot with trunk. In Robotics
and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on,
volume 3, pages 3111–3116. IEEE, 2002.

[47] Ian R Manchester, Uwe Mettin, Fumiya Iida, and Russ Tedrake. Stable
dynamic walking over uneven terrain. The International Journal of Robotics
Research, page 0278364910395339, 2011.

[48] Thijs Mandersloot, Martijn Wisse, and Christopher G Atkeson. Control-
ling velocity in bipedal walking: A dynamic programming approach. In
Humanoid Robots, 2006 6th IEEE-RAS International Conference on, pages 124–
130. IEEE, 2006.

[49] D.S. Marigold and A.E. Patla. Strategies for dynamic stability during loco-
motion on a slippery surface: effects of prior experience and knowledge.
Journal of Neurophysiology, 88(1):339–353, 2002.

[50] Jonathan S Matthis and Brett R Fajen. Visual control of foot placement
when walking over complex terrain. 2013.

[51] Tad McGeer. Passive dynamic walking. the international journal of robotics
research, 9(2):62–82, 1990.

[52] Tad McGeer and Leigh Hunt Palmer. Wobbling, toppling, and forces of
contact. American Journal of Physics, 57(12):1089–1098, 1989.

[53] AE Minetti, LP Ardigo, and F Saibene. The transition between walking and
running in humans: metabolic and mechanical aspects at different gradi-
ents. Acta physiologica Scandinavica, 150(3):315–323, 1994.

[54] Igor Mordatch, Emanuel Todorov, and Zoran Popović. Discovery of com-
plex behaviors through contact-invariant optimization. ACM Transactions
on Graphics (TOG), 31(4):43, 2012.

205

[55] L.M. Nashner. Balance adjustments of humans perturbed while walking.
Journal of Neurophysiology, 44(4):650–664, 1980.

[56] Koichi Nishiwaki and Satoshi Kagami. Strategies for adjusting the zmp ref-
erence trajectory for maintaining balance in humanoid walking. In Robotics
and Automation (ICRA), 2010 IEEE International Conference on, pages 4230–
4236. IEEE, 2010.

[57] Koichi Nishiwaki, Satoshi Kagami, Yasuo Kuniyoshi, Masayuki Inaba, and
Hirochika Inoue. Online generation of humanoid walking motion based
on a fast generation method of motion pattern that follows desired zmp.
In Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on,
volume 3, pages 2684–2689. IEEE, 2002.

[58] Federico Parietti and Hartmut Geyer. Reactive balance control in walk-
ing based on a bipedal linear inverted pendulum model. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages 5442–5447.
IEEE, 2011.

[59] A.E. Patla and J.N. Vickers. Where and when do we look as we approach
and step over an obstacle in the travel path? Neuroreport, 8(17):3661–3665,
1997.

[60] Aftab E Patla. Understanding the roles of vision in the control of human
locomotion. Gait & Posture, 5(1):54–69, 1997.

[61] Aftab E Patla and Joan N Vickers. How far ahead do we look when re-
quired to step on specific locations in the travel path during locomotion?
Experimental brain research, 148(1):133–138, 2003.

[62] M. Pijnappels, M.F. Bobbert, and J.H. van Dieën. How early reactions in
the support limb contribute to balance recovery after tripping. Journal of
biomechanics, 38(3):627–634, 2005.

[63] J. Pratt, T. Koolen, T. De Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson,
and P. Neuhaus. Capturability-based analysis and control of legged loco-
motion, part 2: Application to m2v2, a lower-body humanoid. The Interna-
tional Journal of Robotics Research, 31(10):1117–1133, 2012.

[64] J.E. Pratt and R. Tedrake. Velocity-based stability margins for fast bipedal
walking. Fast Motions in Biomechanics and Robotics, pages 299–324, 2006.

206

[65] Jerry Pratt, John Carff, Sergey Drakunov, and Ambarish Goswami. Capture
point: A step toward humanoid push recovery. In Humanoid Robots, 2006
6th IEEE-RAS International Conference on, pages 200–207. IEEE, 2006.

[66] Jerry Pratt and Gill Pratt. Exploiting natural dynamics in the control of a
3d bipedal walking simulation. In Proceedings of the International Conference
on Climbing and Walking Robots (CLAWAR99), pages 797–807, 1999.

[67] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, Rob Playter, et al. Big-
dog, the rough-terrain quadruped robot. In Proceedings of the 17th World
Congress, pages 10823–10825, 2008.

[68] Marc H Raibert et al. Legged robots that balance, volume 3. MIT press Cam-
bridge, MA, 1986.

[69] A. Ruina, J.E.A. Bertram, and M. Srinivasan. A collisional model of the en-
ergetic cost of support work qualitatively explains leg sequencing in walk-
ing and galloping, pseudo-elastic leg behavior in running and the walk-to-
run transition. Journal of Theoretical Biology, 237(2):170–192, 2005.

[70] Patrick Saint-Pierre. Approximation of the viability kernel. Applied Mathe-
matics and Optimization, 29(2):187–209, 1994.

[71] Patrick Saint-Pierre. Approximation of viability kernels and capture basins
for hybrid systems. In European Control Conference, pages 2776–2783, 2001.

[72] Patrick Saint-Pierre. Hybrid kernels and capture basins for impulse con-
strained systems. In Hybrid Systems: Computation and Control, pages 378–
392. Springer, 2002.

[73] Yoshiaki Sakagami, Ryujin Watanabe, Chiaki Aoyama, Shinichi Mat-
sunaga, Nobuo Higaki, and Kikuo Fujimura. The intelligent asimo: System
overview and integration. In Intelligent Robots and Systems, 2002. IEEE/RSJ
International Conference on, volume 3, pages 2478–2483. IEEE, 2002.

[74] AM Schillings, BMH Van Wezel, TH Mulder, and J. Duysens. Muscular re-
sponses and movement strategies during stumbling over obstacles. Journal
of Neurophysiology, 83(4):2093–2102, 2000.

[75] AL Schwab and M Wisse. Basin of attraction of the simplest walking
model. In Proceedings of the ASME Design Engineering Technical Conference,
volume 6, pages 531–539, 2001.

207

[76] Koushil Sreenath, Hae-Won Park, Ioannis Poulakakis, and Jessy W Grizzle.
A compliant hybrid zero dynamics controller for stable, efficient and fast
bipedal walking on mabel. The International Journal of Robotics Research,
30(9):1170–1193, 2011.

[77] M. Srinivasan and A. Ruina. Computer optimization of a minimal biped
model discovers walking and running. Nature, 439(7072):72–75, 2005.

[78] P-F Tang, Marjorie H Woollacott, and Raymond KY Chong. Control of re-
active balance adjustments in perturbed human walking: roles of proximal
and distal postural muscle activity. Experimental Brain Research, 119(2):141–
152, 1998.

[79] Darryl G Thelen, Laura A Wojcik, Albert B Schultz, James A Ashton-Miller,
and Neil B Alexander. Age differences in using a rapid step to regain bal-
ance during a forward fall. The Journals of Gerontology Series A: Biological
Sciences and Medical Sciences, 52(1):M8–M13, 1997.

[80] Alf Thorstensson and H Roberthson. Adaptations to changing speed in
human locomotion: speed of transition between walking and running. Acta
Physiologica Scandinavica, 131(2):211–214, 1987.

[81] Claire J Tomlin, Ian Mitchell, Alexandre M Bayen, and Meeko Oishi. Com-
putational techniques for the verification of hybrid systems. Proceedings of
the IEEE, 91(7):986–1001, 2003.

[82] Yao-Yang Tsai, Wen-Chieh Lin, Kuangyou B Cheng, Jehee Lee, and Tong-
Yee Lee. Real-time physics-based 3d biped character animation using an
inverted pendulum model. Visualization and Computer Graphics, IEEE Trans-
actions on, 16(2):325–337, 2010.

[83] Michiel Van De Panne. From footprints to animation. In Computer Graphics
Forum, volume 16, pages 211–223. Wiley Online Library, 1997.

[84] Gijs Van Oort and Stefano Stramigioli. Using time-reversal symmetry for
stabilizing a simple 3d walker model. In Robotics and Automation, 2007 IEEE
International Conference on, pages 4673–4678. IEEE, 2007.

[85] M. Vukobratović and J. Stepanenko. On the stability of anthropomorphic
systems. Mathematical Biosciences, 15(1):1–37, 1972.

[86] Miomir Vukobratović and Branislav Borovac. Zero-moment point – thirty

208

five years of its life. International Journal of Humanoid Robotics, 1(01):157–
173, 2004.

[87] Miomir Vukobratovic and Davor Juricic. Contribution to the synthesis of
biped gait. Biomedical Engineering, IEEE Transactions on, (1):1–6, 1969.

[88] Boston Dynamics website. http://www.bostondynamics.com.

[89] Eric R Westervelt. Toward a coherent framework for the control of planar biped
locomotion. PhD thesis, Citeseer, 2003.

[90] Eric C Whitman and Christopher G Atkeson. Control of a walking biped
using a combination of simple policies. In Humanoid Robots, 2009. Hu-
manoids 2009. 9th IEEE-RAS International Conference on, pages 520–527.
IEEE, 2009.

[91] P.B. Wieber. On the stability of walking systems. In Proceedings of the inter-
national workshop on humanoid and human friendly robotics, 2002.

[92] Pierre-Brice Wieber. Constrained dynamics and parametrized control in
biped walking. In International Symposium on Mathematical Theory of net-
works and systems, 2000.

[93] Pierre-Brice Wieber and Christine Chevallereau. Online adaptation of ref-
erence trajectories for the control of walking systems. Robotics and Au-
tonoous Systems, 54(7):559–566, 2006.

[94] David A Winter. Biomechanics and motor control of human gait: normal, elderly
and pathological. 1991.

[95] Martijn Wisse, CG Atkeson, and DK Kloimwieder. Swing leg retraction
helps biped walking stability. In Humanoid Robots, 2005 5th IEEE-RAS In-
ternational Conference on, pages 295–300. IEEE, 2005.

[96] W. Wolfslag. Basin of attraction of controlled simplest walker. (unpub-

lished), 2012.

209

http://www.bostondynamics.com

GLOSSARY

ZMP Zero Moment Point

CoM Center of Mass

HZD Hybrid Zero Dynamics

MPC Model Predictive Control

IP Inverted Pendulum

LIP Linear Inverted Pendulum

S LIP Spring-Loaded Inverted Pendulum

S W Simplest Walking (model)

ODE Ordinary Differential Equation

DOF Degree(s) Of Freedom

TCOT Total Cost Of Transport

Viable and controllable regions

V0 0-step viable region: all non-failed states at midstance

Vn n-step viable region (n≥ 1): all initial states, from which the

robot can take at least n steps and not fail

V∞ ∞-step viable region (viability kernel): all initial states, from

which the robot can step indefinitely

C0 target region: the set of all states satisfying a given goal

Cn n-step controllable region (n≥ 1): all initial states, from which

the robot can reach the target C0 in n or fewer steps

C∞ ∞-step controllable region: all initial states, from which the

robot can reach the target C0 or approach it asymptotically

210

C(·) controllability map: the 1-step controllable region as a function

of the target region

C∞(·) ∞-step controllability map: the ∞-step controllable region as a

function of the target region

Ĉn strict n-step controllable region (n≥ 1): all initial states, from

which the robot is able to reach the target C0 in exactly n steps

Ĉ∞ strict ∞-step controllable region: all initial states, from which

the robot can approach the target C0 asymptotically

Ĉ(·) strict controllability map: the strict 1-step controllable region as

a function of the target region

µ(·) measure (volume metric) of a set

2X power set of the set X, i.e. the set of all subsets of X

U control space: the space formed by considered control parame-

ters of a model

S Poincaré section

S̄ extended Poincaré section: the Cartesian product S × U

q̄ extended state: a point in S̄ , i.e. a combination (q, u) of a state

q ∈ S and controls u ∈ U

V̄0 extended 0-step viable region: all combinations of non-failed

states and allowed controls

V̄n extended n-step viable region (n≥ 1): all combinations of initial

states and controls, for which the robot can take n steps and not

fail

V̄∞ extended∞-step viable region: all combinations of initial states

and controls, for which the robot can step indefinitely

211

C̄n extended n-step controllable region (n≥ 1): all combinations of

initial states and controls, for which the robot can reach the tar-

get C0 in n or fewer steps

C̄∞ extended ∞-step controllable region: all combinations of initial

steps and controls, for which the robot can reach the target C0

or approach it asymptotically

ˆ̄Cn extended strict n-step controllable region (n≥ 1): all combina-

tions of initial states and controls, for which the robot can reach

the target C0 in exactly n steps

ˆ̄C∞ extended strict ∞-step controllable region: all combinations of

initial states and controls, for which the robot can approach the

target C0 asymptotically

ˆ̄C(·) extended controllability map: the extended strict 1-step control-

lable region as a function of the target region

V̄u
n , C̄u

n extended n-step viable/controllable region, corresponding to

the state space extended by the control parameter(s) u

Inverted pendulum model in 2D

θ angle between the stance leg and the vertical

θ̇ angle rate of the stance leg

xst control parameter step-length

p control parameter magnitude of the push-off impulse

tst step time (also, swing time): time from the initial midstance to

the next instant of collision

θsw angle between the swing leg and the vertical just before the in-

stant of collision

212

θ̇0 initial velocity of the robot at midstance

θ̇1 velocity of the robot at the next midstance

θ̇t target velocity of the robot at midstance

pmax actuator limitation: the maximum allowed push-off impulse p

tst,min actuator limitation: the minimum allowed step-time tst

V̄ xst
n extended n-step viable region (n≥ 0), where the extension is by

the control-parameter step-size xst

V̄ p
n extended n-step viable region (n≥ 0), where the extension is by

the control-parameter push-off p

V̄ p,xst
n (full) extended n-step viable region (n≥ 0), where the extension

is by both control-parameters the step size xst and push-off p

C̄xst
n extended n-step controllable region (n≥ 1), where the extension

is by the control-parameter step size xst

C̄p
n extended n-step controllable region (n≥ 1), where the extension

is by the control-parameter push-off p

C̄p,xst
n extended n-step controllable region (n≥ 1), where the extension

is by both control-parameters the step size xst and push-off p

pgr magnitude of the collision impulse from the ground along the

colliding leg

vp velocity of the hip just after the push-off impulse

~rst unit vector from the stance foot to the hip at the instant of colli-

sion

~rsw unit vector from the swing foot (collision point) to the hip at the

instant of collision

(·)− value of a given variable just before the instant of collision

(·)+ value of a given variable just after the instant of collision

213

ysw height of the swing foot above the ground

Fst compressive force in the stance leg

Linear inverted pendulum model in 2D

xh horizontal position of the hip relative to the stance foot

yh height of the hip above the ground

ẋh horizontal velocity of the hip

l length of the stance leg

xst control parameter step-length

tst control parameter step-time (also, swing-time): time from the

initial midstance to the next instant of collision

lmax maximum allowed length of each leg

xmax horizontal distance from the hip to the stance foot when the

stance leg is at the maximum allowed length lmax

yG constant height of the hip above the ground (model constraint)

v0 initial velocity of the robot at midstance

v1 velocity of the robot at the next midstance

vt target velocity of the robot at midstance

tst,min actuator limitation: the minimum allowed step-time tst

V̄ xst
n extended n-step viable region (n≥ 0), where the extension is by

the control-parameter step-size xst

V̄ tst
n extended n-step viable region (n≥ 0), where the extension is by

the control-parameter step-time tst

V̄ tst ,xst
n (full) extended n-step viable region (n≥ 0), where the extension

is by both control-parameters the step size xst and step-time tst

214

C̄xst
n extended n-step controllable region (n≥ 1), where the extension

is by the control-parameter step size xst

C̄tst
n extended n-step controllable region (n≥ 1), where the extension

is by the control-parameter step-time tst

C̄tst ,xst
n extended n-step controllable region (n≥ 1), where the extension

is by both control-parameters the step size xst and step-time tst

(·)− value of a given variable just before the instant of collision

(·)+ value of a given variable just after the instant of collision

~rh position vector of the hip relative to the stance foot

Fst compressive force in the stance leg

Walking controller design

xst,max actuator limitation: the maximum allowed step-size xst

θ̇∗ nominal (target) velocity of the IP model of Ranger at midstance

x∗st nominal step length of the IP model of Ranger

p∗ nominal push-off magnitude of the IP model of Ranger

ux(·) step-size controller: a function of the midstance velocity θ̇0

which outputs the desired step-size xst

up(·) push-off controller: a function of the midstance velocity θ̇0

which outputs the desired push-off p

∆θ̇ absolute value of the error in velocity, |θ̇− θ̇∗|

ν the (next-step) relative error in velocity: the ratio of the error

∆θ̇ in velocity at the next midstance to the initial error; ν is a

function of the initial velocity θ̇0, step-size xst, and push-off p

νx the best relative error in velocity: the smallest relative error ν

over all push-offs p

215

νp the relative error ν which assumes the (proposed) step-size con-

troller ux is used

d distance from an extended state (θ̇0, xst) to the minimum-step-

time boundary of the region C̄xst
∞

V̄ p
ux the set of all combinations (θ̇0, p) of the initial velocity and push-

off that are viable, if the (proposed) step-size controller ux is

used

α a parameter of the step-size controller for Ranger: the slopes

of the controller function; also, the approximate slope of the

minimum-step-time boundary of the region C̄xst
∞ for Ranger

αp a parameter of the push-off controller for Ranger: the slope of

the controller function for velocities around the nominal veloc-

ity

βp a parameter of the push-off controller for Ranger: the slope of

the controller function for small velocities

p0 a parameter of the push-off controller for Ranger: the com-

manded push-off at zero midstance velocity

µv random perturbation in the midstance velocity θ̇0

µx random perturbation in the control-parameter step-size xst

µp random perturbation in the control-parameter push-off p

mv magnitude of the random velocity perturbation µv

mx magnitude of the random step-size perturbation µx

mp magnitude of the random push-off perturbation µp

Mv largest magnitude mv of velocity perturbations for which the

robot does not fail, assuming no other perturbations in the

model

216

Mx largest magnitude mx of step-size perturbations for which the

robot does not fail, assuming no other perturbations in the

model

Mp largest magnitude mp of push-off perturbations for which the

robot does not fail, assuming no other perturbations in the

model

˜̇θ0 midstance velocity after the random perturbation µv

x̃st control-parameter step-size after the random perturbation µx

p̃ control-parameter push-off after the random perturbation µp

Miscellaneous

mcont number of control parameters per step

mgoal number of restrictions on the state-space imposed by a given

goal of locomotion

γ slope angle in passive walking models, such as Simplest Walk-

ing model

217

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	Introduction
	Past control approaches
	Passive dynamics
	Zero moment point
	Hybrid zero dynamics
	Model predictive control
	Optimal control policies

	Capture regions
	Viability theory
	Control approach in this thesis
	Contributions of the thesis

	Viable and controllable regions
	Viable regions
	Controllable regions
	Strict controllable regions
	Disturbances, model errors, and noise

	Viability and controllability conjectures
	Viable is controllable
	Two-step controllability

	Simple models of walking
	Inverted Pendulum in 2D
	Linear Inverted Pendulum in 2D
	Poincaré section

	Special cases, examples, and applications
	Constraints
	Goals
	Control strategies
	Multi-DOF models

	Extended viable and controllable regions
	Extended viable regions
	Strict extended controllable regions
	Extended controllable regions
	Parameter extension
	Relation to capture regions

	Methods
	Controllable regions
	Viable regions
	Extended viable regions
	Extended controllable regions
	Constraints

	Inverted pendulum model in 2D
	Equations of motion
	Limits of walking
	Poincaré map

	Viability and controllability of the 2D IP model
	Allowed states and controls
	One-step controllability
	n-step and -step controllability
	Viable and extended viable regions
	Additional constraints

	On robustness of passive dynamics

	Linear inverted pendulum model in 2D
	Equations of motion
	Walking constraints
	Poincaré map

	Viable and controllable regions
	one-step controllability
	n-step and -step controllability
	Viable and extended viable regions
	Swing time limitation

	IP vs. LIP
	Step-size controls
	Small steps: push-off in the IP is step-time in the LIP

	Two steps is almost everything
	Simple models
	Two-step controls in the robotics community
	Evidence from humans
	Counting rules
	Conclusion

	Stable, robust, efficient, and simple walking controller
	Test robot: Cornell Ranger
	Model
	IP model proxy of Ranger
	Controllable regions

	Controller design for Ranger
	Step-size controller: objectives
	Stability
	Robustness
	Efficiency
	Step-size controller
	Push-off controller
	Summary of the Ranger controller

	Simulation results
	Controller design recipe
	Discussion

	Viability and controllability of passive walkers
	Set-valued map representation of extended controllable regions
	Supplementary calculations for the 2D IP model
	Computation of the extended n-step controllable regions
	Boundary of the extended -step controllable region p
	Extended -step controllable region with two control axes
	Controllability for large target speeds

	Supplementary calculations for Cornell Ranger
	Leg swinging limitations
	Push-off limitations
	Energy efficiency of the step-size controller

	Inverted Pendulum in 3D
	Model
	Example goals

	Bibliography
	Glossary

