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Abstract

We present a geometric representation of the set of 3D rigid body collisional impulses that are rea-
sonably permissible by the combination of non-negative post-collision separation rate, non-negative
collisional compression impulse, non-negative energy dissipation and the Coulomb friction inequality.
The construction is presented for a variety of special collisional situations involving special symmetry or
extremes in the mass distribution, the friction coefficient, or the initial conditions. We review a variety
of known friction laws and show how they do and do not fit in the permissible region in impulse space
as well as comment on other attributes of these laws. We present a few parameterizations of the full
permissible region of impulse space. We present a simple generalization to arbitrary 3D point contact
collisions of a simple law previously only applicable to objects with contact-inertia eigenvectors aligned
with the surface normal and initial relative tangent velocity component (e.g. spheres and disks). This
new algebraic collision law has two restitution parameters for general 3D frictional single-point rigid-
body collisions. The new law generates a collisional impulse that is a weighted sum of the impulses from
a frictionless but non-rebounding collision and from a perfectly sticking, non-rebounding collision. We
describe useful properties of our law; show geometrically the set of impulses it can predict for several
collisional situations; and compare it with existing laws. For simultaneous collisions we propose that
the new algebraic law be used by recursively breaking these collisions into a sequence ordered by the
normal approach velocities of potential contact pairs.



1 Introduction

Rigid body simulations involving collisional contact necessarily use some kind of contact constitu-
tive assumptions. Such collisional contact constitutive assumptions fall into three main classes: full-
deformation laws; incremental laws (also called “soft”); and algebraic laws (also called “hard” – see
Goyal et al., 1994; Walton, 1992). Full-deformation laws are based on continuum mechanics equations
for the whole body, most often linear elasto-dynamic equations. Incremental laws involve some kind of
micro-mechanical model of the deformation and slip in the contact region, with the assumption that
the motion of the bulk of the bodies is described by rigid-body differential equations of motion during
the collision. Algebraic laws attempt to describe the net collisional interaction by algebraic equations
that relate pre-collision and post-collision quantities. Thus, algebraic laws are generally based on less
stringent rigidity requirements than incremental laws (see e.g., Chatterjee and Ruina, 1998a). One
interpretation of incremental calculations is that they are a means to calculate a reasonable net im-
pulse and not a literal description of the true contact mechanics. In this sense incremental models are
equivalent to algebraic laws where function evaluations involve the solution of differential equations.

Unfortunately no known collision law of any kind is both predictive and accurate, in the sense, say,
that Newton’s laws, or even linear elasticity or the Navier-Stokes equations can be accurate. For a given
pair of bodies, the collisional outcome may well depend on not just the initial velocities, masses, and
mass moments of inertia, but also on some combination of contact shape, contact-mechanics, surface
chemistry, friction, fracture, and vibration phenomena that are not well understood, especially a priori.
Further, in the case of multiple superficially-simultaneous collisions, the predicton of the collisional
outcome often depends so sensitively on initial conditions that sufficiently accurate initial conditions
cannot be expected to be known by a simulator. But even if all modeling ingredients are accurately
known, which they generally are not, there are technical difficulties that prevent simple calculation
of collisional outcomes. Partial differential equations involving bulk and/or contact deformation are
time consuming to solve (and to set up to solve). There is no reason to believe that, in general,
an accurate continuum model can be well approximated by treating the body as rigid everywhere
except in a localized quasistatic region describable by ordinary differential equations (as demanded
by incremental laws). Finally, there is no reason to expect that the outcome of detailed modeling or
exhaustive experimentation has a tractable summarizing description with standard functions or even
lookup tables that apply equally well to a wide variety of bodies and their collisions (as is demanded
by algebraic collision laws).

Any generally applicable collision law, whether coming from detailed continuum modeling, approx-
imating ordinary differential equations, or summarizing functions will be highly approximate unless
applied to a narrow range of collisional situations.

But simulators will simulate collisions with or without an accurate constitutive law. What outcomes
should and should not be reasonably allowed in such simulations, and what basic phenomena may one
hope to easily capture in such simulations? How can one compare various available collision laws? Can
better collision laws be constructed? To help answer these questions it is perhaps useful to describe al-
gebraically and geometrically the basic restrictions that collisional interaction rules might be reasonably
expected to obey, as we do in Section 3 of this paper. In Section 4 we describe how several presently
available collision laws fit in to this scheme. In Section 5 we present a new simple algebraic collision
law which is a crude description of reality at best, but which overcomes some of the shortcomings in
other known laws. And finally in Section 6 we describe a way to use the new law to predict a plausible
outcome for multiple simultaneous collisions.
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2 Preliminaries

The common basic assumptions of single point contact rigid-body collision theory are that the collisional
interaction involves forces that are large compared to body forces and centripetal inertial terms; that
the contact forces occur in a region of spatial extent negligibly small compared to body dimensions;
and that at times before and soon after the collision velocities of points on the bodies can be accurately
calculated using rigid-body relations (using the same positions and orientations before and after the
collision). We do not consider here the possibility of nonnegligible contact moments about the contact
point1.

Based on the foregoing assumptions, the net collisional interaction between an arbitrary pair of
objects colliding in a known configuration must satisfy impulse-momentum relations of the form

P = M ·∆V = M · (Vf −Vi), (1)

where P is the collisional contact impulse transmitted from one object to the other (we arbitrarily
pick one object as the reference object), V is the velocity of the contact point of the second object
relative to the contact point of the reference object, ∆V is the change in V from its pre-collision value
of Vi to its post-collision value of Vf , and M is a second order rank 3 tensor with units of mass,
which depends on the mass distributions of both colliding objects. All symmetric positive definite M
have physical realizations in terms of pairs of unconstrained objects of finite mass (Chatterjee and
Ruina, 1998b). M remains rank 3 for typical single point collisions of linkages consisting of multiple
interconnected objects with frictionless constraints/bearings. Given a mechanism’s configuration and
mass distribution at impending contact M can be found using standard (non-collisional) rigid body
dynamics (see appendix A.1). Derivations of Eq. 1 are outlined in many references (for discussions, see
e.g., Smith, 1991; or Chatterjee, 1997). Equation 1 incorporates linear and angular momentum balance;
these principles can provide no more information. Either P or ∆V describes the effect of the collision on
the rigid body system. For example, if P is known, then the motion of the system is found by applying
P and −P to the two contacting bodies2. All algebraic rigid body collision laws start from Eq. 1 (or
relations equivalent to it; e.g., see Brach, 1991), and then hypothesize three additional conditions (two in
2D) that vary from law to law so that Eq. (1) along with the collision law determine the six unknowns
(four in 2D) P and ∆V. Incremental laws start with the differential form of Eq. 1 (thus requiring
stronger rigidity, see Chatterjee and Ruina, 1998a), and then hypothesize specific types of incremental
contact behavior that vary from law to law; integration of the resulting differential equations up to a
hypothesized termination criterion then determines the outcome of the collision.

When needed, we assume that at least one of the objects is geometrically smooth at the contact point
so a well defined tangent plane exists with normal n directed out from the reference object in the n or 1
direction. For definiteness, we take the first tangential or 2-direction to oppose the tangential component
of pre-collision contact point relative velocity. The other tangential or 3-direction is orthogonal to the
1- and 2-directions. We use this coordinate system for discussion and graphics. Except when noted,
the formulas we present have coordinate-free interpretations. In coordinate form Eq. 1 is

P = M(Vf − Vi), (2)

where the 3 × 1 column vectors P , Vi and Vf , and the 3× 3 local mass matrix M are the component
forms of P, Vi, Vf and M. Further assumptions about the collisional impulse are described below.

1See Brach (1991) for an example of a nongeneric collision where the contact moment is qualitatively important.
Chatterjee and Ruina (1998a) discuss why the contact moment is likely to be unimportant for most collisions.

2Special treatment is sometimes required for systems with special constraints such that an eigenvalue of M is infinite
and P cannot be determined from ∆V alone; or bodies with all mass on a straight line so that M is singular and ∆V
cannot be determined from P alone.
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3 The permissible region in impulse space

The following description of permissible collision impulses contains few new ideas, but is absent from
much of the published collision literature (including texts and monographs like Goldsmith, 1960; Brach,
1991). Brogliato (1996) discusses the permissible region in the space of collision parameters. The
geometric interpretation (in the space of the collision impulse) that we present below motivates the
new collision law, and complements Rubin’s recent paper (1998) as well as Brogliato’s treatment (both
of which attempt to describe the constraints on the collisional interaction in terms of mathematical
expressions without the equivalent, explicit geometric description in impulse space).

We now describe various points, lines and surfaces in impulse space as discussed in part by many
(e.g., Goldsmith (1960), Wang and Mason (1992) and Smith (1991)) but perhaps first brought together
in Chatterjee (1997).

An equivalent discussion could be presented in contact-relative-velocity space, but the description
of friction is not so convenient there.

3.1 Points, lines, and surfaces in impulse space

See Figs. 1 and 2. Each point in impulse space P = (P1, P2, P3) corresponds to a candidate outcome
for a collision with given M and Vi.

The origin P = 0 of impulse space corresponds to no collisional interaction and Vf = Vi. The normal
impulse which brings the normal velocity to zero (perfectly plastic and frictionless) is

PI = −

(
nTVi

nTM−1n

)
n (3)

which in our chosen coordinates is (−Vi1/[M−1]11, 0, 0). The impulse required to bring the contact
points to a stop relative to each other with no bounce and no slip (perfectly plastic and perfectly
sticking), is

PII = −MVi. (4)

For any impulse P the relative velocity of the contact points satisfies P −PII = MVf and we can think
of PII as a reference point for impulses, corresponding to the reference state of zero relative contact
velocity.

A contact kinetic energy Ec can be defined by

Ec ≡
1

2
V T
f MVf =

1

2
(P − PII)

TM−1(P − PII). (5)

The contact kinetic energy Ec is not a simple sum of energies of the separate bodies. However, changes
in Ec due to contact forces are the same as changes in the system kinetic energy. Ec is a natural quantity
to consider in collisional energy calculations since it is frame-invariant, unlike the total kinetic energy
which is not.

Constant Ec defines a surface which facilitates the geometric description of many collision features
(Chatterjee, 1997). Each such Ec surface is ellipsoidal with orientation coinciding with the principal
directions of M , and corresponding diameters in inverse proportion to the square roots of the eigenvalues
of M . The size and position of the Ec surfaces depends on initial conditions. The center C of each
Ec ellipsoid is at PII . An impulse of P = PII leads to zero final Ec and hence the maximum possible
collisional dissipation. An impulse of P = 2PII conserves energy and leads to a direct reversal of the
contact velocity (Vf = −Vi). For a given impulse P the associated contact velocity V is normal to the

3



Ec surface on which P lies. The Ec surface associated with the original motion (or pre-collision energy)
passes through the origin with a normal in the direction of Vi. A collision with no final tangential
velocity (Vf ‖ n) and a given energy corresponds to one where P Tn is maximum on the corresponding
Ec surface. The set of all collisions with Vf ‖ n makes up the line of sticking (Goldsmith, 1960; Wang
and Mason, 1992) which passes through PII and passes through the Ec surfaces where their normals
are parallel to n.

For given Ec the set of impulses with no normal separation velocity (V T
f n = 0) is the ellipse on the

ellipsoidal Ec surface where the surface normal is perpendicular to n (places where the surface tangent
planes contain n). Over the full range of possible values of Ec this makes up the plane of maximum
compression3 (see e.g., Routh, 1897; Goldsmith, 1960; or Wang and Mason, 1992) given by

nT (M−1P + Vi) = 0,

which cuts the Ec surfaces in half and includes both PII (at C) and PI at A. A frictionless collision with
kinematic restitution coefficient e = 1 has the impulse 2PI and conserves energy. The energy conserving
frictionless collision 2PI kills (using PI) and negates (using PI again) the normal approach velocity.
Thus, A bisects OB.

The dashed line (or plane) in Fig. 1, drawn through point D and parallel to the plane of maximum
compression, marks impulses for which the observed kinematic or Newtonian normal restitution e will
be some constant. A specific value of e constrains the impulse transmitted to lie on a plane (a line in
2D) parallel to the plane of maximum compression (for which e = 0). In Fig. 1 point D is on an e < 1
plane but lies outside the initial energy surface and thus corresponds to a net increase in kinetic energy.
This construction provides an indication of energy conservation problems with naive algebraic collision
laws, such as in Whittaker (1944) or Kane and Levinson (1985).

An identically shaped and oriented family of ellipsoidal surfaces can be drawn in contact force space
as level surfaces of FTM−1F . Assuming “force-response rigidity” (Chatterjee and Ruina, 1998a) we can
use F = MA (the differential form of Eq. 2). F and A will not be collinear unless they happen to be
along an eigenvector of M , which may not be along the normal or tangential direction. The possible lack
of alignment of the M eigenvectors with the contact normal and tangent plane is one source of difficulty
in collision modeling since it corresponds to inertial coupling between normal and tangential motions
and between tangential motions. This misalignment manifests itself by Ec surfaces being crooked with
respect to the normal and contact tangent plane.

For every M and pre-collision velocity Vi, there is an Ec ellipsoidal surface in impulse space. Con-
versely, every ellipsoidal surface transversely intersecting the n or 1-axis at the origin corresponds to
the collision of some pair of bodies. Thus, for impulse analysis, consideration of arbitrary rigid body
mechanisms is equivalent to considering arbitrary ellipsoidal surfaces as described above.

3.2 Reasonable restrictions on the contact impulse

Here are some natural and common assumptions about collisions :

1. Non-negative dissipation of kinetic energy constrains the impulse to lie on or inside the ellipsoid
of the initial Ec surface, so P must satisfy (see, e.g., Smith, 1991)

3 Routh used the term “greatest compression” to denote the point during the collision when, as per his incremental
model, the instantaneous normal component of the relative velocity at the contact point becomes zero. That point depends
on the path in impulse space followed by the collision. If, say from experiments, only the net collision outcome is known,
the point of maximum compression cannot be determined. However, the set of all impulses P for which V Tf n = 0 is
well-defined, and called the plane of maximum compression.
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(P − PII)
TM−1(P − PII) ≤ V

T
i MVi. (6)

2. Non-interpenetration in the final collision velocity (V Tn ≥ 0) constrains the impulse to lie “above”
(in the normal direction) or on the plane of maximum compression (line of maximum compression,
in 2D).

3. A non-negative normal impulse (no net tensional impulse) must lie in the upper half space (upper
half plane in 2D): P Tn ≥ 0.

4. If the contact force obeys the Coulomb friction inequality at all instants of time during the
collision, then so must the net contact impulse. Thus P must lie in or on the cone given by
‖P − (nTP )n‖ ≤ µnTP . In 2D collisions, this friction cone reduces to a pair of “friction lines”.

For positive µ, condition (3) above follows from condition (4).
Conditions (1), (3) and (4) are not fundamental. Mechanical energy could be released by contact

chemical reactions or phase transitions in the bodies. There is generally some (usually negligible) contact
tension in part of the collision. Coulomb’s law is only an approximation. But these restrictions might
be reasonable limits for approximate general purpose collision laws. They restrict allowed impulses
to a closed, bounded and convex permissible region in impulse space. This permissible region is the
intersection of half an ellipsoid with a solid cone; for 2D collisions, it is a 2D slice of the corresponding
3D region.

In the absence of additional information about the contact mechanism4, every point inside the per-
missible region represents a plausible collisional outcome. Although we do not expect every permissible
impulse to be witnessed in experiments, we know no basic theoretical reason to further restrict the
permissible region, nor do we know of sufficiently general experimental data to restrict it on empirical
grounds.

All of the collision laws we discuss in this paper use dimensionless collision parameters such as the
coefficient of normal restitution. In calculations with any fixed parameter values, the collision impulse
is then automatically a homogeneous function of degree one in the pre-collision velocity. P is not
simply a linear function of Vi. But, say, doubling Vi while keeping its direction fixed also doubles P
while keeping its direction fixed. This velocity scaling is not fundamental, is not obeyed by some real
collisions (e.g., spheres; see Goldsmith, 1960), but is apparently obeyed by some other collisions (e.g.,
vibration dominated interactions; see Stoianovici and Hurmuzlu, 1996).

3.3 2D geometric constructions

We now describe how the regions accessible to the different collision laws are represented graphically
for 2D collisions. See Fig. 3a.

Pick a normal or 1-direction; and, perpendicular to it, the tangential or 2-direction.
Draw an ellipse whose shape represents a mass matrix M and size represents an initial contact

kinetic energy V T
i MVi/2 (eigenvectors of M are aligned with the principal axes of the ellipse and the

ratio of the eigenvalues of M is the square of the aspect ratio of the ellipse). Ellipses of any shape or
orientation are allowed.

4 An example of such special information would be if the collision is assumed to respect any special symmetry of M
and Vi. The collisions of spheres with no spin component about the n axis would then be restricted to the n, Vi plane, a
subset of the permissible region. Laws that do not explicitly add a symmetry breaking feature will automatically respect
this symmetry, however. Examples include all of the algebraic laws discussed in this paper.
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On the ellipse, locate the two points where the tangents are vertical (points A and B in the figure)
and join these points by a straight line (the line of maximum compression). Locate the points where
the tangents are horizontal (points C and D in the figure) and join them by a straight line (this is the
line of sticking). The final velocity has a left or right component depending on whether the collision
impulse is to the left or right of the line CD.

Pick the impulse origin point O to be on the arc ADB such that the normal to the ellipse is in the
direction of the pre-collision contact velocity. Any point on arc ADB is allowed. If, by convention, the
2-direction is chosen to oppose Vi, then only the points on the portion AD are allowed.

Points A and B correspond to grazing incidence, while point D corresponds to normal incidence.
The magnitude of Vi is not uniquely determined by the construction.

The intersection of the normal axis with the ellipse at E (or 2PI) represents a perfectly elastic,
frictionless collision.

Draw friction lines from point O, at angles ± tan−1 µ from the normal direction.
The permissible region is now visible as the region between the friction lines, above line AB, and

inside the ellipse.
Through point E, draw a line EF parallel to AB. This line represents kinematic restitution e = 1.

All laws using kinematic restitution 0 ≤ e ≤ 1 must predict an impulse somewhere between the lines
AB and EF (possibly extended in both directions).

3.4 Special situations

For the purposes of comparing collision laws we consider various special collision situations. For these
collisions, the curves accessible in impulse space to some well-known one-parameter collision laws, as
well as the 2D regions accessible to the new collision law, are shown in Figs. 4 through 8. Details of
these constructions will be discussed later in the paper. Below, we briefly comment on aspects relevant
to the impulse-space description of this section.

A Generic Collision: The fairly generic collision of Fig. 4 approximately duplicates Fig. 1 but
without the definitions of lines and points. Special cases of this collision appear below.

A Collision with Diagonal M : In contrast to the generic case of Figs. 1 and 4, consider a collision
where the mass matrix is diagonal, as is the case for collisions of spheres and disks (see Fig. 5). The
lines of maximum compression and sticking are aligned with the coordinate axes.

A Tangential Collision (nTVi → 0−): For grazing or tangential incidence (as shown in Fig. 6),
the normal approach velocity is zero, and the energy ellipse is locally tangent to the 1-axis at the origin.
If the line of maximum compression slopes appropriately and the friction coefficient is sufficiently high,
a collision can occur. Laws based on kinematic restitution do not predict/capture finite normal rebound
for grazing collisions.

A Collision with Infinite Friction (µ → ∞): For collisions where the coefficient of friction is
effectively infinite (see Fig. 7), the friction lines are lined up with the tangential axis. Note that for the
case shown in the figure, the center of the ellipse, point C, lies below the tangential axis. A perfectly
dead, no-slip, no-bounce collision cannot occur in the case shown since it would require a net negative
normal impulse component. Thus, e = 0, µ = ∞ does not necessarily mean a dead collision, as some
authors have assumed (e.g., Goldsmith, 1960).

A Collision with Unbounded M : Some specially constrained problems have mass matrices M
which have one or more eigenvalues equal to infinity as for a pendulum striking a floor (see Fig. 8a).
This problem has been examined in 3D as a special, “ideally” constrained (effectively two dimensional)
problem, using Routh’s model (e.g., Stronge, 1994). This problem is treated here as the limit of a
sequence of problems where the eigenvalue in the direction along the pendulum rod approaches infinity
(say with an arbitrarily large point mass replacing the hinge). As the eigenvalue approaches infinity,
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the inital energy ellipse stretches in the corresponding direction. The portion of it contained inside a
suitable finite-sized region approaches the parallel lines shown in Fig. 8b (the center of the ellipse is at
point C).

3.5 Energy dissipation and e ≤ 1

For all single-point frictionless rigid body collisions, it is well known that for normal restitution e ≤ 1,
nonnegative dissipation of kinetic energy occurs.

However, for frictional collisions, the kinematic coefficient of normal restitution can be substan-
tially larger than one even in dissipative collisions. Smith and Liu (1992) have shown this using FEM
simulations, and also observed this experimentally, for collisions where M is not diagonal.

M is diagonal for collisions of spheres and disks; such collisions are called “central collisions”. Special
symmetry-preserving contact deformation behavior can put further limitations on the energy dissipated
in such a central collision. Typical experimental data for spheres and disks, too, shows restitution
coefficients less than unity. Perhaps due to a combination of these reasons, one occasionally encounters
the mistaken opinion that e must be less than unity for central collisions purely from nonnegative energy
dissipation considerations. The impulse-space description presented above allows us to briefly address
this issue.

Even for diagonal M , energy-dissipating collisions with e > 1 can occur, in principle. Figure 9 shows
a nearly-grazing central collision (diagonal M), with reasonable friction, where the accessible region
(gray) is significantly larger than the region allowed by e ≤ 1 (black). In the figure, the maximum
possible value for e is about 17 (it could be made larger). That such collisions are not often observed
in practice is due to details of body-specific deformation mechanisms that are more restricted than the
general cases allowed in this paper.

Smith and Liu (1992) discuss three well-known definitions of coefficients of normal restitution. Note
that the kinetic coefficient of restitution ek is the same as the kinematic coefficient, for diagonal M
(central collisions). Thus, ek > 1 does not preclude positive energy dissipation either. The same applies
to the energetic restitution coefficient, defined in terms of the work done by the normal component of
the contact force.

Finally it is also clear that even for collisions with diagonal M , for sufficiently high friction coefficient,
it is possible to pick an impulse that corresponds to e < 1, lies inside the friction cone, and yet outside
the maximum Ec ellipsoid. Typical collision laws do not usually pick such points for central collisions,
but some naive laws (e.g., Kane and Levison’s law, or Whittaker’s law) can make such energy “creating”
predictions for non-diagonal M , e < 1 and µ > 0, as is pointed out in Kane and Levinson’s text as well
as in appropriate places in this paper.

Thus, for frictional collisions, there is no simple relation between nonnegative energy dissipation and
the inequality e ≤ 1.

4 Some collision laws

We now place the impulses predicted by several collision laws in (and out) of the permissible region and
also discuss other strengths and weaknesses of these laws.

4.1 Collision laws that reach the entire permissible region

One candidate class of collision laws are laws that parameterize the entire permissible region defined by
M , Vi, and µ, and no points outside. Here are 3 ways that this can be done, for example:
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1. Arbitrary parameterization of a convex region. Pick a point P0 inside the permissible
region, say its centroid. Then, since the region is convex, all points can be defined by their spherical
angles from P0, say 0 ≤ ψ1 ≤ π, 0 ≤ ψ2 ≤ 2π, and the fraction of the distance from P0 to the boundary,
say 0 ≤ ρ ≤ 1. Thus the outcome of all accessible collisions can be described with the triple (ψ1, ψ2, ρ),
and no choice of these parameters (within their given bounds) picks a non-permissible point.

2. Projected impulses. Parameterize the outcome of the collision by the impulse itself, i.e., let
the impulse components be the “collision parameters”. If this impulse is outside the permissible region,
project it back to the surface along lines leading to an arbitrary point P0 inside the region (say the
centroid). In other words, if P is outside the permissible region, diminish the magnitude of P − P0

until the region boundary is reached (the energy surface, the friction cone, or the plane of maximum
compression).

3. Brach’s approach. Consider the following three-parameter law proposed by Brach (1991):
a Newtonian or kinematic restitution parameter e for the normal direction, and two impulse ratio
parameters µ2 and µ3 (not to be confused with the coefficient of friction) for the two tangential directions.
If all values of µ2,3 were allowed while e was restricted to lie between 0 and 1, then this law would access
an infinite slab of finite thickness in impulse space, parallel to the plane of maximum compression.
The parameters µ2,3 are understood to be limited within bounds that respect physical considerations.
The bounds on these collision parameters are expressed in terms of (configuration-dependent, implicit,
nonlinear) inequality constraints expressing non-negative energy dissipation, in addition to friction
limits. Brach’s laws can capture all permissible impulses (if we allow e > 1).

The laws above that access the full permissible region have the merit of being capable of describing
all permissible collisions. But we do not know any reason to expect that any of the parameters in these
descriptions might be constant over a useful range of collisions (although Brach’s proposed impulse-ratio
parameter often stays roughly constant for some range of collisions of spheres and disks, if not too wide
a range of initial approach angles is considered). The parameters in the above descriptions also do not
have any special intuitive or theoretical interpretation.

The utility of a collision law comes not just from its ability to describe a posteriori any given collision
once the outcome is known from other sources, but also its ability to predict the outcome of collisions
for a range of initial velocities and orientations based either on much collisional data or on separately
measurable parameters. The above laws seem lacking in this regard.

Even if not separately measurable and constant, a collision parameter such as a normal restitution
coefficient retains some physical interpretation for arbitrary collisions: higher e roughly means that
the objects will bounce more. The parameters in the first two laws given above, as well as Brach’s
impulse-ratio parameters, seem to lack this kind of simple interpretability.

As yet, no collision law we have seen accesses a large 3D subset of the permissible region in impulse
space; has collision parameters that have simple physical interpretations; and has collision parameters
that are at least roughly constant over some range of some collisions of some bodies for which some
data is available.

4.2 Some algebraic collision laws

The permissible region is three dimensional for 3D collisions and two dimensional for 2D collisions. Any
collision law that has only one free parameter (in addition to a friction inequality using µ) can access a
1D subset (curve) of the 3D permissible region. Similarly, any law with two independent free parameters
(in addition to a friction inequality using µ) can access a 2D subset of the permissible region. Currently
available algebraic laws, except for the full parameterizations of the permissible region as described
above, access only a 1 or 2 dimensional region.

We now discuss some popular algebraic collision laws. For illustration we assume that initial motion

8



is to the left so the origin O is on arc AD. The impulses accessible to the laws below are shown in Figs.
4 through 8 for a variety of collisional situations.

4.2.1 Routh’s law

Routh’s (1897) law was re-popularized recently for 2D collisions by Wang and Mason (1992) and ex-
amined in some detail in 3D by Bhatt and Koechling (1995a,1995b). It has also been studied by many
other authors. Routh’s law assumes infinite tangential contact stiffness, any combination of possibly
nonlinear springs and dashpots in the normal direction, and standard friction relations using µ. The
neglect of tangential compliance allows expression of the incremental relations in terms of normal im-
pulse Pn instead of time, totally independent of details of the normal compliance mechanism. Denoting
tangential and normal components with t- and n-subscripts respectively, the tangential impulse Pt (a
two-component vector in 3D) is incrementally calculated by

Either dP = M · {dVn, 0, 0}
T with Vt = 0 and ‖dPt‖ ≤ µdPn (no slip) (7)

or dPt = −µ(Vt/‖Vt‖) dPn (slip or impending slip)

where Eqs. 1 and 2 apply to impulse increments throughout (and in cases of impending slip, the
unit vector Vt/‖Vt‖ is understood to be the direction of impending slip). Routh’s law is perhaps the
classical incremental law. It may be regarded as algebraic in the sense that ODE solving (for given
initial conditions) is function evaluation. Also, in 2D (where Vt has only one component) the governing
differential equations can be solved in closed form. Routh’s kinetic termination condition was

Pn at end of collision = (1 + ek)× Pn at point of maximum compression

after Poisson (1833)5. We loosely refer to all laws that use Routh’s incremental contact relations Eq. 7,
with any termination criterion, as “Routh’s law”.

Routh’s law, in the absence of jamb-associated difficulties (Batlle and Cardona, 1998) can access a
1D curve that always lies in the permissible region for any 0 ≤ ek ≤ 1 and µ > 0 (see Ivanov, 1992 for a
proof of non-negative energy dissipation in 3D). It has the ability to predict finite normal rebound for
tangential or grazing collisions (see e.g., Wang and Mason, 1992) even for ek ≤ 1, unlike algebraic laws
that use Newtonian or kinematic restitution, which predict zero normal rebound for finite restitution
e. Routh’s restrictive assumption of no tangential compliance naturally leads to inaccurate predictions
as shown in Maw et al. (1981) and Smith and Liu (1992). In particular, Routh’s law cannot predict
nonzero tangential rebound for tangential or grazing collisions nor the slip reversal of a sphere seen
in essentially all experiments for at least a small range of nearly normal collisions. The latter effect
is easily visible with rubber “super” balls dropped while spinning about a horizontal axis (see e.g.,
Johnson, 1983; or Garwin, 1969).

See Fig. 3b. To graph Routh’s accessible region for 2D collisions (see Wang and Mason, 1992) fix
µ and track P as the normal impulse component PN increases from 0 (at the start, P is at O, outside
the parameter range and outside the permissible region). As PN increases P moves up along the right
friction line until it reaches the line of sticking. At the line of sticking the path has a kink. If the line
of sticking makes a smaller angle with the normal than the friction lines do, then sticking is possible
and the representative point climbs up along the line of sticking. Otherwise, it climbs up along a line
parallel to the left friction line (as shown in the figure).

5Some ideas of energetic “consistency”, and some ambiguities caused by 3D collisions with “jamb”, have led to the
definition of newer, work-based definitions of restitution (see Batlle and Cardona (1998) for discussion and references).
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Depending on the aspect ratio and orientation of the ellipse, the angle of incidence (i.e., location
of point O) and the friction coefficient, the intersection with the line of sticking might occur above the
line of maximum compression, or even not at all.

The termination criterion, if we use Poisson or kinetic restitution, is that the normal impulse should
be (1+ek) times the value it had when the representative point reached the line of maximum compression.
That point is taken to be the collision impulse.

For grazing collisions Routh’s law is the only one discussed in this paper that can predict a collision
with non-zero post-collision separation. That is, only Routh’s law predicts impulses above the plane of
maximum compression for grazing collisions (see Fig. 6).

For infinite friction collisions (see Fig. 7) if the center of the initial energy ellipse happens to lie
exactly on the tangential axis, then the region accessible to Routh’s law shrinks to a point.

For a collision with unbounded M aligned as in Fig. 8, with large enough friction, Routh’s law
predicts only a dead collision (no-slip, no-bounce, P = PII).

4.2.2 Whittaker’s law

This classical law (see Whittaker, 1944) is stated more clearly in a 3D context in Kane and Levinson
(1985), to whom it is often attributed. It uses a coefficient of normal restitution e (Newtonian or
kinematic restitution) in addition to µ, and therefore accesses a 1D region in impulse space. By this
law, either the collision terminates at a condition of sticking, or the impulse is on the friction cone and
opposes the post-collision tangential velocity Vft. That is,

V T
f n = −(1 + e)V T

i n and

Either Vft = 0 with ‖Pt‖ ≤ µP
Tn or Pt = −µ

Vft
‖Vft‖

P Tn .

This law requires the solution of nonlinear algebraic equations in 3D, cannot predict spin reversal of
spheres, cannot predict finite rebound for grazing collisions, and can predict arbitrarily large increases
in kinetic energy in a collision for e ≤ 1 and µ > 0 (see Fig. 8).

Whittaker’s law is simplest to view geometrically by starting from the coefficient of kinematic restitu-
tion e, which specifies which line the collision terminates on (shown dashed in Fig. 3d). The intersection
of the dashed line with the line of sticking is first located. This point is marked with a black circle in
the figure. If the point is between the friction lines, then it is the collision impulse. If it is to the right
of the right friction line, then the collision impulse is taken to be the intersection of the right friction
line with the dashed line. Conversely, if the point is to the left of the left friction line, then the collision
impulse is taken to be the intersection of the left friction line with the dashed line.

As can be seen in Figs. 3 or 4, the intersection of the line of sticking and the e = 1 line can easily be
outside the initial energy ellipse. This is a direct demonstration of Kane’s well known collision energy
“paradox”. This possibility of generating an increase in system kinetic energy persists for e < 1 and
reasonable µ so long as the initial Ec surface is skewed as in the figures. The situation is extreme in the
context of unbounded M as in Fig. 8 where this law fails completely in that it predicts an unbounded
increase of kinetic energy and does not respect the hinge constraint in the limit as an increasing point
mass at the bar’s end behaves like a hinge.

For diagonal M the Whittaker-Kane-Levinson law is the same as Routh’s law (see Fig. 5).
For grazing collisions this law can only predict an impulse of P = PII unless PII is outside the

friction cone in which case it predicts zero impulse.
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4.2.3 Smith’s law

This law (Smith, 1991) also has one parameter (kinematic restitution e) in addition to µ. Smith’s law
expresses the tangential impulse direction using a weighted average of pre- and post- collision tangential
relative velocities. This average is an acknowledgement that the tangential impulse comes from frictional
sliding in a variety of directions. Smith’s law accesses a 1D curve in the permissible region, cannot predict
increases in kinetic energy, can capture spin reversal of spheres, but cannot capture non-reversal of spin
for positive µ. It cannot predict finite normal rebound for grazing or tangential collisions, and predicts
a fixed amount of tangential rebound for such collisions (the amount of rebound is dependent on µ).
Nonlinear algebraic equations need to be solved (solutions exist (Chatterjee, 1997), but uniqueness is
unproven at this time).

In Smith’s law, the equations describing the 3D collisional interaction are

Pn

{
1

−µ
Vit ‖Vit‖+Vft ‖Vft‖
‖Vit‖2+‖Vft‖2

}
= M

{
−(1 + e)Vin
Vft − Vit

}
, (8)

where n and t subscripts denote normal and tangential components. This nonlinear system of equations
needs to be solved for Pn and Vft. One or more solutions with Pn < 0 frequently exist for 3D collisions
with large enough values of µ, and these non-physical solutions must be rejected.

See Fig. 3c. We can graph the accessible region for Smith’s law by parameterizing it with e starting
at e = −1 (outside the accessible region and parameter range). For e close to −1, the impulse is small,
Vft(e) < 0, and the impulse ratio is µ. Thus, we draw a curve that climbs from the origin, up the right
friction line.

As e increases, P eventually reaches the line of sticking. Now Vft = 0. As e increases further, Vft
becomes positive, and so the impulse ratio decreases. However, from Eq. 8 it is easy to see that for small
Vft the change in the impulse ratio is quadratic in Vft. Thus, there is no sudden change in direction
(i.e., no kink) and the path of the representative point curves away from the right friction line.

How far and how fast it curves away can be seen from the following. In Fig. 3c, the heavy dashed
line is drawn through point F (see Fig. 3a) and parallel to CD. Just as line EF represents impulses where
the normal component of relative velocity is exactly reversed, this dashed line represents impulses such
that the tangential velocity is exactly reversed. From Eq. 8, the impulse ratio is exactly zero when
VfT = −ViT , i.e., the tangential relative velocity is exactly reversed. Therefore the curving path of the
representative point reaches the normal axis at the point where it intersects the dashed line. Since, in
the figure, that intersection occurs beyond point E, it corresponds to e > 1 and is not shown.

The collision terminates when the appropriate value of e is reached, which corresponds to reaching
a line parallel to AB, somewhere between AB (e = 0) and EF (e = 1).

For grazing collisions Smith’s law can predict only one impulse independent of e (dependent on µ)
unless PII is outside the friction cone, in which case Smith’s law predicts a zero impulse.

4.2.4 Pfeiffer and Glocker’s law, and extensions

This three parameter law (Pfeiffer and Glocker, 1996) is an algebraic law somewhat motivated by
Routh’s law, in that it assumes that the collisional interaction may be divided into well-defined and
distinct compression and expansion phases (see, however, footnote 3). It uses kinetic restitution ek for
the normal direction, and models tangential restitution effects using two other parameters ν and et.
For single point contact the law accesses a 2D subset of the permissible region. Unfortunately the law
is restricted to 2D collisions (in its 1996 form) and does not seem to generalize to a simple 3D form
with tangential restitution. If tangential restitution is not incorporated, this law may be generalized to
a single-parameter 3D version (Anitescu and Potra, 1997).
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The single-point versions with no tangential restitution, of these laws (Pfeiffer and Glocker, or An-
itescu and Potra), are in some ways a combination of Routh’s law and the Whittaker-Kane-Levinson
law, avoiding the principal difficulties of both. By doing two separate algebraic calculations for com-
pression and expansion, Routh’s integration of nonlinear ODE’s is avoided. Meanwhile, at the end
of each stage, the friction condition assumed is that either there is no slip or the tangential impulse
opposes final slip; this extension of the Whittaker-Kane-Levinson law to two stages ensures nonnegative
energy dissipation. Without tangential restitution, these laws just have one collision parameter (normal
restitution) and access a 1D subset of the permissible region.

The primary motivation behind the design of these laws is to pose simultaneous multiple colli-
sion problems as tractable linear complementarity problems whose solutions provide plausible collision
impulses. However, as mentioned in Subsection 6.2 and discussed in Chatterjee (1998), the linear com-
plementarity conditions are not fundamental properties of rigid bodies during collisions, and so there is
no reason to prefer the predictions of these laws over those of other, possibly simpler laws.

4.2.5 A bilinear law for spheres and disks

Based on experiments, as well as an approximation of results obtained using the theoretical analysis
of Mindlin and Deresiewicz (1951), this algebraic law is only applicable to the collisions of objects like
spheres and disks where M has eigenvectors aligned with the coordinate axis in our preferred coordinate
system. In other words, the law applies only to collisions where M is diagonal in our coordinate system.

The law is discussed in Brach (1991) and has been used by various researchers (see e.g., Walton, 1992;
or Jenkins, 1992). First a normal impulse is calculated using a kinematic restitution coefficient (the same
as kinetic restitution, for diagonal M). Then one first assumes that “sticking” occurs, and a candidate
tangential impulse is calculated based on the tangential restitution parameter (in this description, the
case of “sticking” includes tangential velocity reversal). If the candidate impulse violates the friction
inequality, then “slipping” is assumed to occur and the tangential impulse is set equal to µ times the
normal impulse. One expression of this law in our chosen coordinates and using kinematic restitution
is:

Pn = −(1 + e)M11Vin (recall, Vin < 0) (9)

Pt = −
Vit
‖Vit‖

·min{µPn, (1 + et)M22‖Vit‖}

This law is consistent with experiments in the following ways. For nearly normal collisions and
positive et the tangential velocity is reversed (at least in part). Tangential velocity is not reversed for
collisions closer to grazing incidence.

As emphasized above, this bilinear law is meant for diagonal M , the case shown in Fig. 5. For this
case, this bilinear law is identical to the new law described below, and covers the shaded region shown
in the figure.

Note that all the laws described above become identical for frictionless (µ = 0) collisions, irrespective
of whether M is diagonal or not.

5 A new algebraic collision law

All of the algebraic laws of which we are aware, such as the laws described above, lack one or more of the
following features: the law is applicable to 3D, non-reversal of spin of bouncing balls can be predicted,
reversal of spin of bouncing balls can be predicted, predictions are in the permissible region, at least a
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2D subset of the permissible region is covered, calculation is simple and has unique solutions, and the
parameters are easy to interpret.

Towards this end three new collision laws were constructed in Chatterjee (1997) and briefly described
in Chatterjee and Ruina (1997). These new laws have all the features described in the paragraph above.
The new laws are generalizations to non-diagonal-M of the bilinear law of Eq. 9. We present the simplest
of these laws here.

The difficulties in generalizing Eq. 9 to arbitrary 3D collisions are that (1) the direction of the
frictional impulse needs to be chosen (since there are two independent tangential directions); and (2)
for fixed normal restitution e the magnitude of the normal impulse generally depends on the magnitude
and direction of the tangential impulse. That the choice of impulse direction cannot be made in a naive
manner is suggested by the possible energy-increases predicted by Whittaker’s (Kane and Levinson’s)
law. Finally, a form should preferably be picked which leads to easy calculation.

The new law has two restitution parameters e and et. The normal restitution coefficient 0 ≤ e ≤ 1
(kinematic or Newtonian) describes the degree to which the normal approach velocity is reversed6. The
tangential restitution coefficient −1 ≤ et ≤ 1 is a measure of the extent to which the initial tangential
velocity is reversed. Finally, the standard friction coefficient 0 ≤ µ ≤ ∞ is used to bound the impulse
within the friction cone.

The new collision law expresses the collisional impulse as a weighted sum of a perfectly plastic,
frictionless collision (PI), and a perfectly plastic, sticking (i.e., no-slip, no-bounce) collision (PII). Thus
the 2D region accessed by the new law is in a plane that is a somewhat natural choice for general
collisions (the same plane was independently proposed by Rubin, 1998).

This simple choice of impulse directions may be looked upon as a gross approximation that avoids
the difficulties encountered with the 3D implementation of incremental laws (see e.g., the discussion of
Routh’s law in Bhatt and Koechling (1995a,1995b)), taking the view, as explained in the introduction,
that even complicated incremental laws are themselves gross approximations with limited applicability.
At the same time, this simple choice provides the twin benefits of a simple, extra collision parameter
as well as explicit, linear equations that are easy to solve and have unique solutions (compare with
Smith’s Eq. 8, which is nonlinear and can also have some physically unrealistic (spurious) solutions
which iterative numerical procedures have to recognize and avoid).

The calculation proceeds in two steps. First a normal impulse is calculated which enforces the kine-
matic restitution condition. Then an additional impulse parallel to the plane of maximum compression
is computed which does not affect the normal restitution. The second impulse is computed to achieve
the tangential restitution but can be clipped by the friction inequality.

5.1 “Sticking” Calculation of Candidate Impulse: No Friction Limitations

The candidate impulse, P̂ , is taken to be

P̂ := (1 + e)PI + (1 + et)(PII − PI), where 0 ≤ e ≤ 1, −1 ≤ et ≤ 1. (10)

We prove below that the impulse P̂ is guaranteed to satisfy the energy and non-interpenetration
criteria (conditions 1 and 2 of section 3.1). Our proof consists of the following observations.

The set of possible impulses P̂ , as given by Eq. 10, is a parallelogram with 4 vertices within or
on the boundaries of the the convex half-ellipsoidal region permitted by energy and interpenetration
conditions.

6We have chosen to keep e between 0 and 1 for simplicity. However, this is not a fundamental restriction, and there can
be kinematic restitution greater than 1 in some frictional collisions (see subsection 3.5). If a specific application requires
it, e can be allowed to be greater than 1 but assurance of staying in the permissible region is lost and needs to be checked
on a case by case basis.
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PI (for e = 0, et = −1) is a perfectly plastic frictionless collision. 2PI (for e = 1, et = −1) is
an energy conserving frictionless collision. 2PII (for e = 1, et = 1) corresponds to a collision with
perfect rebound, Vf = −Vi, hence, no interpenetration occurs and energy is conserved. For the fourth
vertex, consider applying the corresponding impulse 2PII − PI (for e = 0, et = 1) as a sequence of two
impulses, 2PII and −PI . After 2PII has acted, the energy is the same as before while the velocity is
reversed, becoming −Vi. The impulse −PI corresponds to a perfectly plastic, frictionless collision for
that (new) initial condition. Thus the fourth vertex corresponds to a collision terminating on the plane
of maximum compression and inside the initial energy surface.

Thus the interior of the parallelogram described by Eq. 10 lies entirely in the region permitted by
energy and interpenetration conditions (end of proof).

5.2 “Slipping” Check of Candidate Impulse: Consideration of Friction

The candidate impulse, P̂ , is of the form (1 + e)PI + c(PII − PI), for a positive number c = 1 + et. If
P̂ lies inside the friction cone, then all criteria of subsection 3.2 are satisfied, and we take P̂ to be the
impulse transmitted in the collision.

Note that (1 + e)PI corresponds to a frictionless collision and so always lies inside the friction cone.
If P̂ lies outside the friction cone, then there is some constant κ ≥ 0 such that the impulse

P ∗ := (1 + e)PI + κ(PII − PI) (11)

lies exactly on the surface of the friction cone. In such cases, we take P ∗ to be the impulse transmitted
in the collision. The calculation is straightforward.

If ‖P̂ − (nT P̂ )n‖ > µnT P̂ (12)

then κ =
µ(1 + e)nTPI

‖PII − (nTPII)n‖ − µnT (PII − PI)
(13)

else κ = 1 + et (14)

(note that the check is sufficient even for the problematic cases: (a) when nT P̂ < 0, i.e., when P̂ has
a negative normal component, and (b) when PII and hence P̂ is along the normal direction). Finally,
obtain P ∗ from Eq. 11.

Geometrically, the preceding calculation is equivalent to projecting the candidate impulse P̂ on to
the friction cone along a line in impulse space in the PI −PII direction. This shows that for frictionless
collisions the present law reduces to the other laws reviewed here, with Newtonian restitution (as may
also be seen by putting µ = 0 into Eq. 13). Since the impulse (1 + e)PI is known to be inside the
friction cone, and since the calculation of Eq. 13 is only attempted when P̂ lies outside the friction cone,
existence and uniqueness of solutions are assured from geometrical considerations.

One might also construct collision laws that predict approximately the same impulse as suggested
above, but with a smoothened transition between “sticking” (no projection required) and “slipping”
(projection required). We skip such considerations for simplicity.

To summarize, the collision calculation consists of Eqs. 3, 4 and 10, followed by Eqs. 12 through
14, and finally Eq. 11. For clarity, the calculations described above are given in MATLAB code in
appendix A.2. The 2D region in 3D impulse space that is accessible to the new collision law is shown
schematically for a generic collision in Fig. 2. See also Fig. 4.

Since the corresponding calculations for the case of spheres and disks are exactly equivalent to those
in the bilinear law referred to earlier, this law also reduces to that bilinear law whenever the mass matrix
M is diagonal (as for collisions of disks and spheres; see Fig. 5).
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For grazing collisions (Fig. 6) the region accessible to the new law shrinks to a line that includes the
coverage of the other 3D algebraic laws except for Routh’s law. Rightly or wrongly, the new law does
not predict the normal rebound of Routh’s law for the frictional locking type of situation shown. On
the other hand, the new law can predict tangential rebound, which Routh’s law cannot.

For collisions with infinite friction (see Fig. 7) the new law covers the other laws considered, perhaps
reflecting an ability to deal with a broader range of tangential compliances.

Finally, the new law makes reasonable predictions for a constrained problem with sufficiently high
friction, with the constraint modeled as the limiting case of M having a large eigenvalue (see Fig. 8).

5.3 Composite collision laws

A simple way to generalize the new law, to (say) allow normal rebound in grazing collisions, is to use it
in a weighted sum or interpolation with one or more other laws each of which generates impulses in the
permissible region. Since the permissible region in impulse space is convex the interpolated impulses
would also be in the permissible region.

For example, we might introduce an interpolation parameter σ, and define a “newer” collision law
as follows:

Given M , Vi, µ and e, calculate the collision impulse PR as predicted by Routh’s law, and
the impulse Pnew as predicted by the new law. Using the parameter 0 ≤ σ ≤ 1, now compute
the collision impulse to be P := σPnew + (1− σ)PR.

The extreme of σ = 0 returns Routh’s law, while σ = 1 makes our Routhless prediction.
At present there does not seem to be enough data to suggest that a good fit with such a combined

law would have a usefully greater accuracy than either law alone. But such an interpolation will yield
in effect a three-parameter collision law that will be able to capture phenomena such as simultaneous
normal and tangential rebound in tangential collisions. For general 3D collisions, such a composite law
will access a three dimensional subset of the accessible region.

6 Simultaneous multiple collisions

Although simultaneous collisions of independently moving objects seem non-generic, the collision of
one object with another that already is in contact with still other objects is common in practice. And
although single-point collisions of seemingly ideal mechanisms fit the formalism described in the paper
thus far, they may also be treated as simultaneous collisions. Hence a recent surge of interest in
predicting the outcome of simultaneous collisions.

The first step in generalizing the impulse space approach is straightforward. Recall that the impulse-
momentum relations for a single-point collision are of the form P = M(Vf − Vi), equivalent to WP =
Vf−Vi (where W = M−1). It is well known (see e.g., Pfeiffer and Glocker, 1996) that a similar equation
holds for multiple collisions, which we write as

WG = Uf − Ui , (15)

where the column matrix G contains the components of the impulses P at all k locations, and the column
matrices Uf and Ui contain the components of the relative velocities Vf and Vi at all k locations. In
what follows, we will loosely call G an impulse, and the U ’s relative velocities. In general W will be
symmetric and positive semidefinite. Often, W will be singular, corresponding to the possibility of
self-equilibrating impulse sets (say, equal and opposite impulses along the line joining the two contact
points on a body that simultaneously touches two immovable objects). Thus the permissible region will
often be infinite in extent unless new restrictive assumptions are added.
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6.1 The ill-posed nature of simultaneous multiple collisions

In some sense, a rigid body collision law is a distinguished limit of the properties of a deformable body.
The limit is distinguished in that the limiting behavior depends not just on some single measure of
deformation going to zero, but also on ratios of deformation moduli (say tangential to normal com-
pliance). For single-point collisions the relevant ratios may not vary too wildly from one collision to
another similar collision, hence the hope of deterministic collision laws with some predictive utility. For
multiple impacts, however, the key ratios in the distinguished limit include, say, the ratios of (very
small) separation distances of various pairs of contacting points. These ratios can differ radically for
macroscopically similar-looking situations.

Most notably, all collision laws give vastly different results if the order of near-simultaneous collisions
is changed by minute changes in initial conditions, for typical configurations. But since “simultaneous”
is only a coarse-grained description of a complex event that does have structure in time, variously
ordered near-simultaneous collisions are all different possibilities for the same “simultaneous” collision.
Similarly, the outcome of approximately simultaneous collisions also depends sensitively on the relative
compliances of the various contacts and the relative degree of rigidity of the various bodies. These issues
have been discussed by Ivanov (1995).

The ill-posed nature of “simultaneous” collisions is not a mathematical fine point that can be removed
by an appropriate (possibly very impressive looking) formalism. The ill-posedness of some multiple-
point collisions is a fundamental physical property of the collisions, not a consequence of an unsuitable
modeling approach. The outcome of a “pool break” will vary from game to game, heedless of the
unique outcome predicted by any simultaneous-collision law. The classic example of such a situation
is the longitudinal impact of three spheres discussed in detail by Ivanov (1995). Another example is
a horizontal rod that falls onto a horizontal, frictionless table, making contact at its two endpoints,
studied in detail by Goyal et al. (1998a, 1998b).

The authors of papers on multiple impacts are aware of these difficulties. The primary motivation
behind such studies is often to develop a mathematically consistent framework for simulations. For
example, Moreau (1983) says,

. . . physical situations undoubtedly exist, where this concept gives a reasonably accurate
description of reality. But, to the author’s opinion, the main interest of the concept lies in
the internal mathematical consistency of the resulting evolution problem.

He then adds that an existing, simple and consistent theory may more easily allow more realistic
empirical corrections.

We summarize the simultaneous collision problem as follows: Inherently inescapable ill-posedness
notwithstanding, simulators will simulate simultaneous collisions and there is a need for simultaneous-
collision laws that are as reasonable as possible.

6.2 The LCP formulation and multiple collisions

Although we do not adopt such an approach here, we briefly mention the Linear Complementarity
Problem or LCP (see Cottle, et al., 1992) approach to multiple collisions.

For simplicity, consider what a frictionless, plastic collision might mean in a multiple collision con-
text. We cannot require that the normal components of relative velocities at all contact locations be
exactly zero at the end of such a collision (else, some of the normal impulses required may be negative).

Several authors adopt the complementarity conditions that at each location, either the normal ve-
locity comes to zero and there is a non-negative impulse, or there is zero impulse and the post-collision
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normal velocity is non-negative (see e.g., Löstedt, 1982; Baraff, 1989; Pfeiffer and Glocker, 1996; An-
itescu and Potra, 1997). For a plastic frictionless multiple-collision this assumption guarantees a possibly
non-unique but always physically permissible GI .

LCP based methods have been extended to deal with frictional multiple collisions with nonzero
normal and tangential restitution in 2D (Pfeiffer and Glocker, 1996), and without tangential restitution
in 3D (Anitescu and Potra, 1997).

Note that the realism of such complementarity conditions is not a fundamental property of rigid
body collision dynamics, although similar complementarity conditions are fundamental properties of
smooth motions (Chatterjee, 1998). We know of no reason to prefer the predictions of an LCP-based
law to those of any other law.

6.3 Extension of the new law to multiple collisions

One approach to multiple collisions might be to repeat the approach we have taken to single point
collisions. One might construct a permissible region in the higher dimensional impulse space of G and
then seek a parameterization of a reasonable lower-dimensional subset. Using a linear combination of a
perfectly plastic frictionless collision with a perfectly plastic sticking collision (one from the solution set
of each would need be selected) might still be a reasonable choice. The details of the projection on to
the frictional cone(s) would be more involved. This approach might result in a versatile collision law,
depending on the modeling choices made. We have not pursued this, or other similar higher dimensional
approaches, thus far.

6.4 Using the new law in a sequence of simple collisions

In the first three sections of this paper we have described a basis for defining reasonable single-point
collision laws and have presented one such law. The classical approach to multiple collisions, as discussed
among others by Ivanov (1995) and Baraff (1989), is to treat them as a sequence of collisions.

Well-known drawbacks to this approach are that (a) it involves indeterminacy in the sequence to
be used (Ivanov, 1995), and (b) it can lead to an infinite set of collision calculations to complete one
macroscopic simultaneous collision (Baraff, 1989). Both of these drawbacks are discussed below.

Let us consider the use of our new law in multiple collisions, broken up into a sequence of single
collisions. For k “simultaneous” contacts, we use 2k collision parameters and k friction parameters. If
frictionless hinges are treated as places of simultaneous collision they need no parameters (they have
plastic, sticking collisions). The collection of bodies involved in the simultaneous collision are considered
as separate bodies. Whether mechanisms are broken into separate bodies or not is a modeling choice
(discussed separately below).

We propose that “simultaneous” collisions should be ordered by normal approach velocity. After
r single-point collisions (where r ≥ 0 starts at 0), we pick the contact location where the normal
component of relative velocity is the lowest (i.e., we find the contact location with the greatest normal
approach velocity). If this turns out to be a non-negative number (i.e., separating or sliding but not
interpenetrating), then the collision is over. If it is negative, then we carry out a single-point collision
calculation for that location ignoring the other locations (i.e., assuming that no impulses occur at the
other locations). Once the collision impulse is determined, its effect on all the relative velocities at all
the contact locations is found, using Eq. 15. This gives the initial velocities for the next stage of the
calculation, and the process is repeated.

Having two potential contact points with the same approach velocity is non-generic and can only
occur if there is special symmetry. Such situations include the horizontally falling rod (Goyal et al.,
1998a), two identical spheres hitting a third sphere from two sides, with identical velocities (Ivanov,
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1995) and a “pool break” with an exactly centered initial shot. In this non-generic case three options
available to the simulator are: 1) Change the initial conditions in the simulation (within a reasonable
space of initial uncertainty) to break the symmetry, 2) order the “equal-approach-velocity” collisions
arbitrarily (say, by taking the dot product of the position with a predefined non-special direction), or 3)
following Ivanov’s recommendation for such problems randomize the collision order so that the genuine
indeterminacy in the experiments would then be represented by indeterminacy in the collision law.

If the process described above terminates in a finite number of single-point calculations, then we will
have a prediction that is reasonable, obeys basic restrictions, and has all the merits of the single-point
law used.

However, the prescription may not terminate in a finite number of collisions.
In such cases, so long as rare energy conserving conditions are not met7 a single-point collision law

dissipates a nonzero fraction of the system’s kinetic energy at every collision. Thus, for e < 1, if the
number of collisions is infinite, the system will exponentially (in the number of collisions – macroscopic
time is not advanced) approach a state of zero interpenetration velocity at all locations due to the
dissipation in each collision. Either by extrapolation or by simple truncation, the end of the collision
can still be found in a reasonable time. Since the possibility of infinitely many collisions in finite time
is unavoidable even in single-point collisions (as for the classic case of a ball bouncing vertically on the
floor, with e < 1) series truncation or extrapolation is already a necessary part of general rigid body
simulations with collisions.

For the nonphysical cases where one wants to model energy conserving collisions, it is possible to
construct examples where the sequence of collisions continues indefinitely with no energy dissipation
(we do not mean infinite sequences of separate collisions, but sequences where the system never changes
its configuration and the individual impacts are spaced apart by infinitesimal time intervals). Thus for
energy conserving collisions our proposed sequencing does not necessarily generate a prediction.

The extension to multiple impacts that we have described above has, by construction, most of the
attractive features that originally motivated the single-point version. In particular:

1. It is algebraic, and for each location has two parameters (other than friction) with approximate
but clear physical interpretations.

2. It is simple, in that its algorithmic requirements are limited to basic matrix algebra and linear
calculations.

3. Existence of solutions is guaranteed whenever e < 1, and even for e = 1 in all but some non-
generic collision configurations. Except for systems with special symmetry, uniqueness of solutions
is guaranteed. The non-uniqueness that remains is in keeping with the physics.

4. The law reduces exactly to the single-point version if there is only one contact.

We mention that simulations using the new law in a sequence of collisions with between 5 to 10 bodies
and about 30 “simultaneous” contacts have been conducted by B. Mirtich (personal communication),
with promising results.

6.5 Mechanism constraints as simultaneous impacts

Although the colliding pendulum of Fig. 8 fits in the formalism of single point collisions with one
eigenvalue of M approaching infinity, it may also be viewed as a simultaneous collision at both rod

7Namely (i) e = 1 and µ = 0, (ii) e = 1, et = 1, nTPII > 0 and µ sufficiently large, or (iii) e = 1, and MVi directed
exactly along the normal direction (so that PII is normal.)
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ends. Within the sequencing approach we propose for “simultaneous” collisions, this case would be
treated as a collision of a free floating rod with the ground followed by a sticking collision of the other
end with the hinge. This in turn may or may not lead to an infinite sequence as described.

For collisions of mechanisms there is then the choice of whether to treat the mechanism as a set
of bodies or as an intact mechanism. The intact-mechanism approach leads, at least for single point
collisions, to a single direct collision calculation but is perhaps not likely to be accurate (since the
mechanism constraints cannot be expected to be closely obeyed8 during the collisions). On the other
hand, the independent body approach frequently leads to an infinite series of calculations (which needs
to be truncated or extrapolated).

7 Concluding comments

The set of reasonably permissible impulses for single point collisions has been described. The properties
and shortcomings of some known collision laws have been described, in part using the impulse space
description. A new algebraic collision law has been presented for single-point impacts that is automat-
ically in the “permissible” part of the impulse space, is capable of predicting a fairly wide range of
phenomena, and has unique solutions that are easy to calculate even in 3D. A generalization to multiple
impacts by means of sequenced collisions has been proposed.

We are hopeful that the impulse considerations and new law will facilitate more straightforward
rigid body simulations with impacts.

We conclude with a few natural open questions. What part of the permissible region can be accessed
by reasonable incremental (micro-contact) laws that involve some tangential compliance? What part of
the permissible region is accessed by various experimental situations? Does the proposed sequencing,
which renders many simultaneous collision situations determinate, predict outcomes that match those
observed in practice?
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A Details of Some Calculations for Single-Point Impacts

A.1 Calculating the Mass Matrix M

The mass matrix M is a property of the configuration of the rigid body system at impending contact.
How M is most easily calculated in practice depends on what one is doing. In the worst case a rigid
body simulator can find the three columns of M−1 by doing four non-collisional rigid body calculations.
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This method is based on the fact that the relative acceleration between the contact points on the two
bodies is the sum of two parts: a part that includes centripetal terms as well as the effects of other
applied forces but not the effect of equal and opposite contact forces, and another part that is strictly
linear in the equal and opposite contact forces. The calculation described below can be performed in
any orthonormal coordinate system.

First, in the reference calculation, the two impending contact points are allowed to move as they
would if they were not in contact but all the non-collisional forces in the system were acting. The
difference between the acceleration vectors of the two contact points is the reference relative acceleration.

Next, a unit force is applied in the positive x1 direction, on the contact point of body 2, and in the
negative x1 direction on the contact point of body 1. The two impending contact points are allowed to
move as they would if they were not in contact but all the non-collisional forces in the system as well
as the new forces in the x1 direction were acting. The difference between the acceleration vectors of
the two contact points is calculated. Subtracting from this the reference relative acceleration, the first
column of M−1 is obtained.

A similar calculation, but with the equal and opposite forces acting along the positive and negative
x2, and then x3, directions, gives the second and third columns of M−1. The matrix M−1 thus obtained
is inverted to give M .

A.2 MATLAB code for collision calculation

function P = collrule( M, V_i, n, mu, e, e_t)

% This matlab function calculates the collision impulse P, as

% predicted by the algebraic model proposed by Chatterjee and Ruina.

% Note: single quote (’) means transpose

% M is a 3X3 symmetric positive definite matrix, V_i is 3X1,

% n is 3X1 with n’*n = 1,

% mu >= 0, 0 <= e <= 1, -1 <= e_t <= 1

% Assume that n’*V_i <= 0 (else, no collision occurs)

P_I = - n*n’*V_i /( n’*inv(M)*n ); % perfectly plastic, frictionless: Eq. 3

P_II = - M*V_i; % perfectly plastic, sticking: Eq. 4

P_hat = (1+e)*P_I + (1+e_t)*(P_II - P_I); % candidate impulse: Eq. 10

if norm(P_hat - n*n’*P_hat) > mu*n’*P_hat % friction check: Eq. 12

kappa = mu*(1+e)*n’*P_I/(norm(P_II - n*n’*P_II) - mu*n’*(P_II - P_I));% Eq. 13

else

kappa = 1 + e_t; % Eq. 14

end

P = ( 1+e )*P_I + kappa* (P_II - P_I); % the collisional impulse: Eq. 11
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Figure 2: Schematic diagram showing 2D region in 3D impulse space accessible to the new collision
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normal rebound, but permits tangential rebound.
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that if the center of the ellipse, C, were to lie on the t or 2-axis, then Routh’s model would predict only
a perfectly plastic, sticking collision.
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Levinson’s (Whittaker’s) model predicts unbounded gain in kinetic energy, does not converge to the
kinematically constrained problem, and is not shown.
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to grazing incidence, energy-dissipating collisions can occur with large values of e.
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