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Passive bipedal running

By T. McGEER

School of Engineering Science, Simon Fraser University, Burnaby,
British Columbia, Canada V54 156

(Communicated by R. M. Alexander, F.R.S. — Received 11 October 1989 —
Revised 19 January 1990)

Human-like running is a natural dynamic mode of a simple mechanical
biped. Such a machine consists of two telescoping legs with linear springs,
connected by a hip joint with a torsional spring. It will run passively ; no
pattern of forcing is required to generate the gait. With careful design its
energy consumption can approach zero, but in any case the passive cycle
can be ‘pumped’ by various means to sustain running over a range of
speeds and slopes. Passive running can also be realized over a wide range
of mechanical design parameters. Some parameter sets produce cycles
that are inherently stable; otherwise the mode can be actively stabilized
by a simple control law. Thus the passive running model offers an effec-
tive foundation for design of practical running machines, and also
provides an insight into the physics of human locomotion.

SYMBOLS USED IN THE TEXT

(Numbers in parentheses denote the relevant defining equations)

Italic
A, frontal area 7yp hip—>swing leg CM vector (32)
¢ ?ggr?l;réai )foot»leg CM distance 7ey  contact point—hip vector (33)
Cp hip > torso CM distance (14) Teyr radius of gyration
(0 aerodynamic drag coefficient (10) S stride function (1)
d viscous damping coefficient (17), (40) Vs gradient of 8 2)
g’: ?nergy s take-off - take-off translation
oree . SR specific resistance (7)
g gravitational acceleration T torque
(figure 1)
1 moment of inertia (34), (35), ?/} lsit:;;reé Z?EZ?t;orque (13)
K (45.)’ (46), (47), (4ﬁ8)’ <491) vy bounce parameter (26)
spring constant (figure 1) w leg axis —mass centre offset
l leg length (figure 1) (figure 1)
by nominal leg length (figure 1) & unit vector along the stance leg
b, relaxed leg length (16) 29)
ly stance f;chrustleoefﬁelent (16) fe unit vector normal to the
m mass (figure 1) stance leg
R foot radius (figure 1) .
74e hip—>stance leg CM vector (31) 2 eigenvalue of VS (6)
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Greek
v slope, positive downbhill 0 angle relative to surface normal
(figure 1) (figure 1)
Yy slope for gravity-powered p air density
running T dimensionless time +/1,/¢g
A6 change from steady-cycle 8 (6) Q angular speed
AQ  change from steady-cycle  (6) w, leg-compression frequency
AiCT change from steady-cycle iCT (6) W, leg-compression frequency
Al,, change in equilibrium from /; modified by centrifugal effect
(24) (23)
¢ damping ratio (42) w,,  scissor frequency

Sub- and superscripts
steady-cycle conditions
flight phase
stance leg
stance phase
M biped’s mass centre
swing leg
due to gravity

step index

take-off, torso

normal to the ground (figure 1)
along the ground (figure 1)
immediately after landing
immediately before landing

@O Qo
|+ 8 g

1. PASSIVE DYNAMICS IN BIPEDAL LOCOMOTION

Today we can build machines to travel beyond the outer planets, yet we do not
really understand how we move about on our own two legs. Would that we knew
more; we might then improve athletic performance, effectively rehabilitate the
handicapped, and design rough-terrain vehicles with horse- or human-like
mobility. But there arises a central problem : whereas spacecraft (and most other
vehicles) can simply drone through time in steady state, legged devices locomote
only via an elaborate pattern of motion. At first glance this seems to call for a
corresponding pattern of control. Hence many students of animal locomotion try
to elucidate underlying neuromuscular activity, and designers of legged machines
introduce multiple actuating devices and devise suitable algorithms for controlling
them. (Various references on algorithm design are given by McGeer (1990a).) It
turns out, however, that legged locomotion need not call for any control at all. In
fact, just as a pendulum will swing by itself, so a simple mechanism, two straight
legs connected by a pin joint, will walk by itselfin a quite human-like style. McGeer
(1990a) reported analytical and experimental studies of this ‘passive dynamic
walking’ effect. Here I report an analogous effect for running.

Of course, the practical advantage of running over walking is higher speed; let
us note the essential physics that makes higher speed possible. Walking and
running are distinguished formally by the height of the mass centre at midstance
(McMahon et al. 1987). In walking, midstance is the instant of maximum height,
as the hip rotates over a rigidly extended stance leg. Alexander (1983) noted that
centrifugal effect on this trajectory lightens the contact force at the foot; as the
speed approaches +/gl, the force goes to zero and further acceleration is precluded.
(You will feel this effect if you try to walk unusually fast.) To go faster you must
diminish centrifugal effect by shortening the leg through midstance; we call this
new gait a run, with midstance the instant of minimum height. Normally the
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subsequent extension is sufficiently vigorous to cause lift-off, which produces a
flight phase after each stance period.

In §§2 and 3 I describe a simple mechanism that runs, and note salient
features of its motion. Next I introduce analytical methods for calculating its gait
and stability. These methods are then used to evaluate energy dissipation, means
for recouping energy losses, and robustness of running behaviour with respect to
variations in model parameters.

2. THE MODEL

Figure 1 shows the biped runner. It has semicircular feet, straight legs, and a
point mass at the hip. (McGeer (1988) has shown that the hip mass has roughly the
same effects as an extended torso.) Each leg has a translational spring parallel to
its axis, which allows for compression during stance, and the subsequent rebound
into the flight phase. The hip has a torsional spring, which moves the legs back and
forth in a ‘scissor’ action. All motion is confined to the plane of the figure. The feet
are massless, so that all of the machine’s mass is above the leg springs. The legs
themselves have arbitrary mass and inertia. All of the dynamics analysis is done
in dimensionless terms, with total mass m, nominal leg length /,, and gravity ¢
providing the base units. (One unit of time is therefore 4//;/g, one unit of inertia
ml3, one unit of stance spring stiffness mg/{,, etc.)

For purposes of analysis, the mechanism of figure 1 need be complicated no
further. However, practical running would call for one addition. When a biped

mass Mjeg

inertia Mmeg 7Eyr

kieg

Ficure 1. Running is a passive dynamic mode of this simple biped. The legs have arbitrary
mass, centroid, and moment of inertia, and compress telescopically against linear springs.
A torso is roughly approximated by a point mass at the hip. The feet are massless rigid
semicircles. While running, the legs bounce between flight and stance phases, and are cycled
back and forth in a scissor motion by a torsional spring at the hip. Note that angles are
measured from the surface normal rather than the vertical.
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recovers its free leg in preparation for the next stride, it must lift the foot clear of
the ground to avoid toe stubbing. Thus humans flex the swing knee. In fact this
may be a passive motion; Mochon & McMahon (1980) and McGeer (1990b) have
shown that, at least in walking, a knee-jointed leg will flex and re-extend naturally
during its recovery phase. Passive knee flexure might also work for running, but
alternatively the free leg could be shortened by active means. In any case leg
shortening would leave the motion of the basic straight-legged model essentially
undisturbed.

3. THE CYCLE

Figure 2 shows an example of running by our mechanical biped. (For the sake
of interest we have chosen model parameters to match the speed and flight/stance
times of a set of human data measured by McMahon et al. (1987).) The mathematics
underlying figure 2 are explained in §4, but the motion can be understood without
any calculations. In essence it is just a scissor oscillation proceeding in phase with
vertical bouncing. During flight the hip spring first brakes spreading of the legs,
and then starts to bring them back together; meanwhile the machine as a whole
follows a ballistic arc, and rotates slightly so that the forward leg is first to strike
the ground. Then during contact the legs cross while the overall mass centre
bounces on the stance spring. Finally the machine takes off again when the contact
force goes to zero. Initial conditions are then as they were for the previous stride,
so the cycle repeats indefinitely (with the legs exchanging roles on alternate
strides).

A quantitative look at cadence in this cycle reveals the central role of the hip-
spring’s scissor motion in generating the gait. The time for two strides of figure 2
(i.e. one full back-and-forth cycle for each leg) is 2.524/1,/g. By comparison, if the
legs were allowed to scissor free in space, the inertia/spring period would be almost
the same, namely 2.574/1,/g (41). Similarly close correspondence is found over a
wide range of speeds, stride lengths, and other model parameters (e.g. figure 4).
Moreover the essential idea of ‘bounce-and-scissor’ locomotion extends beyond
our bipedal model; Thompson & Raibert (1989) have shown similar cycles in
monopeds. In the monopedal model the scissor action is between the leg and a
relatively high-inertia torso.

These simple ‘bounce-and-scissor’ models could be adopted directly for design
of mechanical runners. But what about for understanding natural locomotion ?
Obviously locomotion in nature is more complicated, but we believe that the
physics is nevertheless likely to be similar. In walking we have investigated models
ranging from something as simple as a gravity-powered rimless wagon wheel,
through two-dimensional bipeds with knees (McGeer 1990b), torsos, and various
methods of energy supply (McGeer 1988), to three-dimensional bipeds and
quadrupeds (McGeer 1990a) whose passive cycles include a sideways rocking
motion. The motions of these various models differ in detail, but not in their main
features. (In particular, energy requirements, cadences, and link trajectories are
generally similar from one model to the next.) Hence to study walking it is most
sensible to begin with the simpler models, which demonstrate the essential physics
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Ficure 2. This example of a passive running cycle corresponds roughly to relaxed jogging
in a human. All quantities are dimensionless; total mass m, nominal leg length /,, and
gravity ¢ provide the base units. During flight the legs first spread and then return under
the influence of the hip spring; meanwhile the overall mass centre follows a parabolic free
fall (frames 14 of (a)). Then landing compresses the stance leg, and the swing leg is
shortened as necessary to keep its foot clear (frames 5-8). Stance rebound throws the
machine back off the ground, and the cycle then repeats with the legs exchanging roles.
Note that no energy is dissipated during the cycle; it is simply exchanged between kinetic,
gravitational, and elastic stores.

in the most uncomplicated form, and then add a sequence of complicating effects
in pursuit of practicality and fidelity to natural behaviour.

In my view, the similar sequence for the study of running begins with the
bouncing models of McMahon et al. (1987), which address the relation between
stance leg stiffness, cadence and speed. The model considered here then integrates
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this bouncing motion with the legs’ back-and-forth scissoring. I envisage further
elaboration toward mechanisms with more natural geometry, but even these
elementary forms can help to explain the structure and dynamics of animals. In
particular, Alexander (1988) has identified a wide variety of elastic components in
series with animal muscles, and has shown that they store a substantial part of the
energy exchanged during a locomotion cycle. Outstanding examples for our pur-
poses are the tendons of the gastrocnemius, plantaris, and deep flexor muscles of
the kangaroo, which behave like the stance spring in our model, and the apo-
neurosis of the longissmus muscle in the backs of dogs and deer, which behaves like
the hip spring (in this case producing a scissor oscillation between fore- and hind
legs). Our mechanical model suggests that the elastic elements govern the
dynamics; they establish the cyclic motion, which the muscles then pump much
as a child pumps a swing. A mechanical analogue of this idea is analysed in §8.
Although in practice some pumping is necessary to sustain the running cycle, in
principle at least (as in figure 2) passive running can be perfectly conservative.
This follows from the symmetry of the gait; if you were shown a film of running
as in figure 2, you couldn’t tell whether the projector was playing in forward or
reverse; one would produce the mirror image of the other. In this respect it
faithfully mimics symmetry in animal running, which has been noted by Raibert
(1986). Now, if the stance and hip springs are perfectly loss-free, then the only
mechanism left for dissipating energy is an impulse on landing (see Appendix 3).
However, in a symmetric run, landing is the mirror image of take-off; as there is
no impulse at take-off, there is none on landing. Energy would be lost only if
asymmetry were introduced, for example by making w in figure 1 non-zero.

4. THE MATHEMATICS

This section outlines the method for running analysis, while leaving the
equations of motion for the Appendix (table 6). Consider a convenient reference
point in the stride. We use take-off. At this point the following five state variables
can be specified independently.

1. Stance and swing leg angles 0, , 0y

2. Angular rates Q. , QFT'

ot

3. Stance extension rate [, .
Note that angles are measured from the surface normal, not the vertical (figure 1).

These variables fully determine initial conditions for the flight phase (17), (36),
(37). The flight-phase equations are then integrated forward until the leading foot
hits the ground. We presume that the foot then stops instantaneously. (On slippery
ground a more careful analysis is required, with explicit treatment of sliding
(McGeer 1989); however, for surfaces with reasonable friction the zero-slip
approximation is almost exact.) If the foot’s velocity before landing includes a
component normal to the stance axis, then instantaneous stopping requires an
impulse; the impulse changes Q., Qg, and [, according to (44). Otherwise the
stance spring absorbs the impact gradually, and the stance phase begins with the
speeds unchanged. In any case the appropriate initial conditions are put into the
stance phase equations, and integrated forward until vanishing of the contact force
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indicates the next take-off. If the new take-off state is identical to the original,
then the cycle is repetitive. .

Mathematically one can think in terms of a stride function, S, mapping take-off
conditions from stride & to stride k+1:

Oc, Oc,

Or.y | O

.| =s| 2., | (1)
Q. Qp,

iCT k+1 iCT k

We want to find an argument that maps onto itself. For any biped that can run
passively (some cannot) many such solutions exist. For example, there is nothing
especially unique about the cycle in figure 2; a similar motion could proceed over
a range of speeds, which implies a range of cycle amplitudes (figure 4). Hence to
calculate an individual solution one must specify the amplitude, most conveniently
via the take-off stance angle 0, . Four state variables then remain to be found. If
one knows a priori that the cycle must be conservative, then this is the complete
search space. However if the cycle is dissipative then the machine must recoup its
losses, which can be done most easily by descending a slope. In general the
necessary slope (y) must be found simultaneously with the cyclic state vector.

To describe S as merely nonlinear over the search space is to do injustice to its
rather unfortunate complexities, so the search cannot be conducted analytically.
Instead we resort to Newton’s method, whereby an initial estimate for the solution
is improved as follows. Define a gradient matrix:

8 oS S oS s
]- (2)

8= —
v [aaCT 00y, 082, 0025, U,
For small changes in the state variables and slope, the change in Sis approximated
by the first-order terms of its Taylor series:

Oc, Al Oc, Ab,
. O, Al O, R Aly,, N
S Q. AQ, ~Sy Q. J+VS|AQ., +$A7. (3)
Q. AQy, Qr., AQy
o, Al o, Al
Therefore to satisfy the steady-cycle condition, from (1),
Oc, Al Oc, Ab,
O, Al O, Aly,, o5
Qe |+|AQc, [ S) L, |+VS|AL @AV (4)
QFT AQFT QFT A‘QFT
le, Alg, le,, Alg,
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As explained earlier we leave 0 constant in our solution procedure. Solving for
the adjustments required in the remaining take-off variables and the slope leaves:

—1
Aby, 00000 Oc, Oc,
AQ ~ > —> > > > 0 o 0
AQ“T <] T8 a8 as asoas] é?ggg QIT I
AL 0, 020, 020, U Ov1 | 44030 o, 0.
Cp Fr Fp
Ay 00010 e, e,

(5)

To find a solution, one evaluates (5) iteratively until convergence. If the starting
point is reasonable and a solution exists then this technique will find it (to five
figures in each state variable) within ten iterations. Note that each iteration
involves six evaluations of S; one with the nominal state vector, and then five
more for numerical calculation of the gradients. Each evaluation involves numeri-
cal integration of four nonlinear equations (38), (39) through the flight phase,
followed by calculation of the speed change on landing (44), followed by numerical
integration of three nonlinear equations (50) through the stance phase. Thus one
iteration according to (5) calls for intensive computation requiring about 20 s on
an IBM ar.

For the initial estimate in Newton’s method it is sufficient with most parameter
sets to use Oy, =n—0,, Q. = —Qy, =V, where I is the speed anticipated in the
solution, /., = 1 and y = 0. Convergence is accelerated by starting from a solution
previously obtained for a similar parameter set. Another approach is simply to
generate initial conditions at random. This is perhaps naive, but it is also unbiased,
and so can reveal behaviour that might otherwise go unnoticed. In fact with this
technique we discovered that the cyclic solution is not unique even with 6, fixed.
Several solutions are listed in the example of table 1. The first of these is just
bouncing in place on a steep hill (i.e. 0. = —vy = 05 —m). The next corresponds
to normal running. Notice that w,, 7, & T as in figure 2, which indicates that the
legs go through half a scissor cycle in one stride. The next two are unusual;

TABLE 1. NEWTON’S METHOD SOLUTIONS FOR PASSIVE RUNNING CYCLES OVER
40 TRIALS WITH RANDOM INITIAL ESTIMATES IN THE RANGE 0 <0, <m/2;
T/2 <Op, <m;0<Q;, <2; —2<Q; <0 0 < g P <2

(Parameters: R=0;7,.=1/3;¢=0.7; w=0; K = 20; K,;, = 0.2, m, =0.8; 6, = 0.45.)

> lgyr T leg
Newton’s method converged in 16/40 cases, as follows:

cases 1/40 10/40 4/40 1/40
Or, 3.59 2.64 2.30 2.25
Q.. 0 1.65 0.98 0.73

Q. 0 —1.22 —0.47 —-0.41

le, arbitrary 0.90 1.28 1.89
v —0.45 0 0 0

s 0 1.36 3.03 5.01

T, arbitrary 0.26 1.50 2.81

T, arbitrary 0.48 0.66 0.68

W, Ty arbitrary 3.30 9.6 15.6
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Wy, Ty = 3T and 57, respectively, so the legs go through 1.5 and 2.5 scissor cycles
per stride. That is, the legs cross once or twice during flight, as well as once during
stance, and the bounce is more energetic than normal to provide sufficient flight
time. Needless to say, here we are interested only in the ‘half-scissor’ running
cycle.

5. STABILITY

Existence of a repetitive state vector is the essence of passive running. However
it is not a sufficient condition ; the passive cycle must also be stable with respect
to perturbations in the state vector. To investigate stability, suppose that on stride
k the take-off conditions are perturbed from the repetitive values by Al , Aby,
ete. If the perturbations are small, then the conditions at take-off on stride £+ 1

are accurately estimated by the linear approximation of S (3):

Ab, Abg,

Aby, | Abx,

AQ. | =VS[AQ, |. (6)
AQ,, AQy,

AlCT k+1 AlCT k

This is just a linear difference equation in standard form. Solutions are pro-

portional to z¥, where z is any eigenvalue of VS. Thus if all eigenvalues have
magnitude less than unity, then small disturbances decay over subsequent strides.
If not, then disturbances grow and eventually the biped stumbles.

For illustration, return to the example cycle of figure 2. Its eigenvalues and
eigenvectors are listed in table 2. There are three modes, which prove to be quite
typical of passive running ; we will show many more examples. (Similar modes also
arise in passive walking (McGeer 1990a).)

TABLE 2. STRIDE-TO-STRIDE STABILITY OF THE CYCLE IN FIGURE 2

mode speed swing totter
mag. + phase mag. + phase

eigenvalue 1 0.22 +1.62 1.65 +2.42

Oc, 0.13 0.03 +0 0.08 +0

Oy —0.08 0.44 +1.85 0.23 F2.06

Q. 0.42 0.07 F2.47 0.13 F1.07

Qp, —-0.72 0.89 Fl1.44 0.95 +0.55

I, 0.53 0.08 +0.41 0.14 +1.59

Cr

The model in this example is conservative, and so on level ground it can run
steadily at any speed. Thus if the elements in the take-off state vector are
perturbed according to the first eigenvector listed in table 2, then the speed shifts
to a new equilibrium. The model is therefore neutrally stable in this ‘speed’ mode.
A dissipative model, however, would have a unique equilibrium speed on any given
slope ; this would lead to a slowly convergent speed mode, as indicated by figure 5.
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Freure 3. The cycle of figure 2 turns out to be unstable. However passive running can be
stabilized by making the hip-spring stiffer. (¢) The resulting decrease in stride period (and
a small increase in speed, which is of secondary importance). (b) The improvement in
stability. Perturbations on the steady cycle scale over k steps in proportion to z*, where z
is one of five stride-to-stride eigenvalues. Here the positions of these eigenvalues are plotted
in the form of a locus on the complex plane. With a soft hip spring one conjugate pair of
eigenvalues, for the ‘totter mode’, has magnitude larger than unity ; these indicate that the
running cycle is unstable. However a sufficiently stiff spring moves these eigenvalues onto
the unit circle; running is then neutrally stable with respect to small perturbations.

The next mode is called ‘swing’ because of the large 0y, and Q,_components.
It arises in correcting aberrations in motion of the swing leg, and usually damps
quickly.

Finally there is the ‘totter’ mode, which (at least in walking) is how a passive
biped resolves the discrepancy that arises if its initial stride length is inappropriate
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to its initial forward speed. The name refers to an oscillation about the steady
cycle, which as in this example typically has a period of 2-3 strides. Here the totter
mode is unstable.

The totter instability is unacceptable ; something must be done. Options are to
stabilize by active control, which is discussed in §9, or to change design parameters
so that running becomes passively stable. It turns out that although several
parameters can be adjusted to some good effect (table 5), only one is especially
powerful: cadence. As I have explained, cadence is determined by the scissor
frequency, which in turn is most easily adjusted via the stiffness of the hip spring.
Thus figure 3 shows the effect of spring stiffness on the stride-to-stride eigenvalues.
As Ky, increases, the totter eigenvalues tend to diminish until their magnitude
reaches unity. Further increase in K,;, then changes only the phase of the totter
eigenvalues, leaving the magnitude nearly constant. That is, with a sufficiently
stiff spring, and hence sufficiently rapid cadence, the totter mode becomes
neutrally stable. )

Now neutral stability is not quite acceptable, but it turns out that with faster
cadence having improved the situation to this point, a little dissipation (which is
practically inevitable) then makes the totter mode positively stable (figure 5). By
familiar standards the necessary cadence is quite fast. The example of figure 3 calls
for K,;, = 0.2, with a corresponding stride period 7, < 0.7 in units of v//,/g. In
human terms this implies at least five strides (i.e. 2.5 take-offs by each leg) per
second. This rate is at the top end of the human data cited by Margaria (1976), and
considerably faster than is indicated by the data of McMahon et al. (1987) for
jogging.

I should emphasize that these conclusions on stability have been developed for
small perturbations from the steady cycle (in the sense of (6)). Naturally this raises
the question, how small is small? I will address this question in §10.

6. SPEED CONTROL

Running is used to achieve high speed, so one might be interested in using the
passive running model to explore limiting factors. There are three ways to increase
speed. The first method, which was shown in passing by figure 3, is to increase
cadence. The limitation is then hip stiffness, but in any case the effect of cadence
on speed is relatively weak.

The second method is to increase the stiffness of the stance spring; the result is
a shorter contact time and a longer leap through the air. (The data of Margaria
(1976) and McMahon et al. (1987) indicate that humans rely on an analogue of this
method as the primary speed control in running.) The limitation is strength in the
stance leg: long-term vertical equilibrium calls for an average force during stance
of mgr,/7,; the shorter the contact time, the higher the force.

The third method (the only option for a machine with built-in hip and stance
stiffnesses) is to increase scissoring amplitude. Figure 4 shows the effect on the
running cycle. A key point to note is the minimal effect on cadence; stride period
remains close to half the scissor period throughout the speed range. However the
fraction of the period in stance decreases with increasing speed, so again leg
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Fieure 4. Forward speed can be controlled by varying the amplitude of the legs’ scissor
action. (@) Amplitude as a function of speed, and the corresponding variation in cycle
timing. Note that although the stance:flight ratio varies with speed, the overall time for
one stride remains roughly constant. (b) The locus of stride-to-stride eigenvalues against
speed. Its features are similar to those of the locus against hip stiffness (figure 3); here,
running is unstable at low speed, but stable at high speed.

strength is the limiting factor. Notice that figure 4 also shows a lower limit on
speed, which is reached when stance occupies the whole of the cycle, and the flight
time goes to zero. This limit is determined by the stance stiffness, and can be shifted
(if necessary all the way to zero speed) by making the stance-spring stiffer.

I have included with figure 4 a root locus to show the effect of scissor amplitude
on stability. Note especially the totter eigenvalues, which converge along a broad
outer arc, split along the negative real axis, merge again, and split onto an inner
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arc through the complex plane. This pattern is somewhat canonical: figure 3
showed a similar pattern with hip stiffness as the variable, and one sees much the
same pattern varying other parameters as well (for example, stance stiffness,
damping, etc.) Therefore the designer can use one parameter to compensate for
another. In figure 3, for example, totter stability could be achieved with lower hip
stiffnesses if the speed were faster; in figure 4, totter stability could be achieved
at lower speed if the hip spring were stiffer.

7. ENERGY DISSIPATION

Thus far I have confined attention, rather optimistically, to passive running
without dissipation. Here we will evaluate dissipative effects, and suggest levels of
energy consumption that might be achieved by a practical passive runner. For the
present I imagine balancing dissipation by descending a slope, but in the next
section, an alternative means of energy supply is analysed.

Downbhill running is particularly convenient for evaluating energy consumption,
because the slope is equal to specific resistance:

SR = resistive force/mass = mechanical work done/mass x distance travelled. (7)

SR is commonly used as a measure of efficiency for all manner of vehicles. In
running, contributors to SR include joint friction, landing impulses, and aerody-
namic drag. I shall evaluate each in turn.

7.1. Joint friction

First consider friction in telescoping of the stance leg. Figure 5 shows its effect
on gait parameters and SR. For convenience in calculations I have taken the
friction to be viscous (17), measured by the damping ratio { = d,.,/v/4K,.,, which
one would observe if the model were oscillating vertically on the stance spring.
(Some may prefer to measure dissipation by the quality; @ = 1/2¢. Alternatively
one might just note that { = 0.05 corresponds to ~50% energy loss during each
vertical oscillation.) As an example of the damping level that can be achieved in
practice, data presented by Raibert et al. (1984) indicate that his monopedal
hopper had a damping ratio of 0.06 with a pneumatic stance spring. For a passive
running machine as in figure 5, this would imply SE ~ 0.08 at a speed just below
sprinting. Most of this resistance is due to direct frictional dissipation, but there
is also a small contribution from a landing impulse (which arises because friction
makes the running cycle asymmetric). Substantial improvement could be realized
by using a metallic spring rather than a pneumatic cylinder; the cylinder,
however, has the advantage of easily adjustable stiffness.

Figure 5 also includes a root locus illustrating the effect of stance damping on
stability. As we mentioned earlier, damping stabilizes the totter mode. It also
makes the speed mode slowly convergent rather than neutrally stable, as now there
is only one steady speed for any given slope.

Next consider friction in the hip joint. This requires careful treatment. The
problem is that hip damping makes the foot land with excess forward speed, which
tends to trip the machine. Figure 6 shows the consequences. As the damping
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Ficure 5. Friction in compression of the stance leg drains energy from the passive running
cycle, but losses can be made good by running downbhill. In this example, the friction is
taken to be viscous, and is measured by the damping ratio for vertical oscillations on the
stance spring; (a) (lower plot) the slope required for steady running, as a function of
damping ratio. Most of the energy loss is directly due to friction, but a part is dissipated
by an impulse on landing; (b) damping moves the stride-to-stride eigenvalues inside the
unit circle, and so makes running positively stable.

increases, a negative landing impulse (i.e. a downward pull) is required to stop the
foot. (Actually the foot would slip on landing, because a downward impulse is
physically impossible ; however, the impulsive stop is still a good approximation
(McGeer 1989).) Then a bit more damping makes the running cycle disappear
completely. Fortunately the cycle can be resuscitated by only a small adjustment
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Figure 6. Whereas friction in the stance spring can be countered simply by running
downbhill, friction in the hip requires more careful attention. Hip damping makes the foot
land with excess forward speed. Stopping the foot then calls for a negative impulse (i.e. a
downward pull), which is not only physically impossible but also dynamically unacceptable.
Thus only slight friction at the hip can trip the passive cycle. However the situation

is retrieved by shifting each leg’s mass centre backward from the leg axis (w < 0, see
figure 1).

of the leg mass centre. Thus, as shown in the figure, if the mass centre is placed
behind the axis of the leg (i.e. w < 0) then running can be sustained even with
substantial hip friction. (The same is true for walking.) However this adjust-
ment has the unpleasant side effect of destabilizing the totter mode, so active
stabilization becomes necessary. Therefore the best strategy is to minimize hip
friction in the first instance. We have found ball bearing joints satisfactory for our
walking machines, and with similar arrangements we expect that hip friction in a
running machine would make only a very minor contribution to SR.

7.2. Unsprung mass

Landing impulses due to asymmetry, as in figures 5 and 6, make only small
contributions to SR under any reasonable conditions. However more substantially
dissipative impulses arise if the feet have non-zero mass. Energy dissipation can
be estimated by imagining a point mass m, hitting the ground with speed Vtoot, a0d
stopping elastically. Then:

AE = (1/2)m, vtgootT' (8)

With m; and vy, in dimensionless form, dividing (8) by stride length gives the

contribution to SE. Also v;oq,, & — ¢ (as landing mirrors take off, and at take-off
the foot moves parallel to the leg axis). Therefore:

(AE/mygs) ~ my(i2, /2s). (9)
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Even in a sprint l%T /2s < 1, so at most this contribution is numerically equal to
m;. At slower speed it is only half that or less. For a carefully designed machine
m; can be quite small; Raibert (1986) achieved m; &~ 0.01 in his quadruped runner,
even with each foot incorporating part of a pneumatic actuator. That leaves
unsprung mass a very minor contributor to the total SE.

Unfortunately the figures are not so good for a human runner. Although
telescoping legs cannot transmit lengthwise impulses, knee joints can; conse-
quently, humans have an effectively higher unsprung mass. Force measurements by
McMahon et al. (1987) indicate a vertical impulse of = 0.08 (normalized by m+/gl,)
in jogging. An impulse of this magnitude from a machine with telescoping legs
would involve m; =~ 0.1! Of course for nature telescoping legs are not an option.
(One wonders what course evolution might have taken had the choices been
otherwise!)

7.3. Aerodynamic drag

Usually one estimates aerodynamic force by using the formula:
Fy = 3pV?4,C. (10)
Normalizing by m, ¢, and [, gives the contribution to specific resistance:

Fy, _1V?pdl,
mg 2gl, m

Cp. (11)

The first RHS quotient is just the square of the normalized speed. The second
quotient is the normalized mass of the box of air roughly enclosing the model. On
farth this number is of the order 0.01. Finally Hoerner (1965) suggests C, = 1 for
a human. The aerodynamic contribution to SR then amounts to about 0.01 in a
jog, and 0.05 in a sprint (V = 3.5). These figures are similar to estimates made by
Margaria (1976) from experimental data. Considerable improvement could be
realized by streamlining, and so reducing C/,.

7.4. Total specific resistance

Table 4 lists conservative estimates for the various contributions to the specific
resistance of running, and the corresponding power requirements. These confirm
that, as the jogger already knows, running is hard work. For example, scaling the

TABLE 3. AN ESTIMATE OF SPECIFIC RESISTANCE IN RUNNING

mechanism parameter resistance means for improvement
A

jfogging running sprintir;g

stance damping Qeg 0.05 0.07 0.10 efficient leg spring,
bearings

hip damping Auip <0.005 0.01 0.01 efficient hip spring,
bearings

normal impulse asymmetry <0.005 <0.005 <0.005 symmetry

unsprung mass m <0.005 <0.005 0.01  structural design

aerodynamic drag O 0.01 0.03 0.06 streamlining

total SR 0.06 0.11 0.18  cf. =0.02 in walking

power SR xV 0.09 0.28 0.63  normalized by mg+/gl,
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power to suit a human-sized machine gives a figure of 0.3 h.p.t for jogging, and
2 h.p. for sprinting. These figures are comparable to those for humans. Margaria
(1976) shows measurements of oxygen uptake while running on a treadmill (and
hence free of aerodynamic drag) that indicate energy consumption corresponding
to SR =~ 0.43, independent of speed in the range 0.8 < V < 1.9 (fast jogging and
below). To find the mechanical work this figure must be multiplied by the con-
version efficiency of muscle; a value of 0.25 is considered representative, so SR
comes out to be about 0.11.

Incidentally a jogger also knows that walking is more economical than running,
and the passive walking model (McGeer 1990a) bears out this experience. The SE
in walking at ¥V & 0.25 is about 0.02, and the mechanical power is only about
0.015 h.p.

8. ENERGY SUPPLY

Consider means for overcoming the specific resistance. I consider two
alternatives to running downhill : torqueing about the hip, and thrusting with the
stance leg.

8.1. Stance torque

Suppose that during contact a torque 7% is applied to the stance leg, in addition
to the torques caused by the hip spring and gravity. This new component does
additional work on the leg, and so adds energy to the cycle amounting in symmetric
running to 2736, . Then the energy balance for steady running on slope y is:

27000, = s(y,—7), (12)
where vy, is the slope for running under gravity power. Hence the required torque
is: s

e % 550 1o =) (13)

Torque application according to this strategy turns out to harmonize well with
the passive running cycle, with little effect on gait or stability. The only problem
is that the torque has to be produced by pushing against something. The swing leg
cannot serve as the reaction partner; its inertia is too small, and in any case it
should be left free to avoid problems similar to those produced by hip damping.
A better alternative is to push against a leaning torso. Thus if a torso with centroid
some distance ¢y, from the hip is held at angle 6, by reacting against the stance leg,
then the torque produced is:

Th = mpcpsin (Op+ 7). (14)

The torso angle required for running on slope y therefore satisfies, from (13),
sin (Op+7y) & s/(2mycpOc,) (Y, —7)- (15)

For illustration, take ¢ = 0.3. Then with gait parameters as in the example of
table 1, df;/dy works out to be approximately equal to 6. Presumably one would
be prepared to lean the torso by as much as 0.5 radian or so; this would be sufficient
for steady jogging on slopes within ~ +0.1 radian of 7y,. Thus hip torque offers a
useful but somewhat limited range of capability. For greater range one would use
stance thrusting.

+ 1 h.p. =745.7 J &%,
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8.2. Stance thrust

Stance thrusting can be done in any number of ways. One simple option is
negative damping, i.e. with an incremental force proportional to [,. This is
unattractive, however, because just as positive damping improves the stability of
the totter mode (figure 5), so negative damping degrades stability. A more
promising option turns out to be ‘ramping’ the relaxed position of the stance
spring, according to:
pring & L= ly+1,60. (16)

Thus, in general, the stance force is:
Fleg = Kleg(lzf—lc)“dleg zC' (17)

Figure 7 shows the value of [, required for steady running with various scissor
amplitudes, as a function of slope. The cycle remains stable right across the range
of possibilities shown in the figure; thus running can be sustained at any desired
speed and slope by appropriate choice of [, However it turns out that [, causes the
same tripping problem as arises with hip friction; to avoid the problem, as figure
7 indicates, vigorous thrusting must be accompanied by backward shifting of leg
mass. Actually humans may use the same technique. When running on the level
we let support roll all the way from heel to toe, but when climbing we run only on
our toes. This shifts each leg’s mass centre backward with respect to an axis
connecting support point and hip.

We have now described three different media for supplying energy to the
running cycle: a downhill slope, hip torque, and stance thrust. All are effective
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Frcure 7. As an alternative to running downhill, energy can be supplied by thrusting with
the stance leg. In this example the thrust is generated by ‘ramping’ the equilibrium length
of the spring, according to /,, = [, +1,6.. Some care is required when using this technique,
because sufficiently large /, makes the landing impulse negative and so ‘trips’ the running
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because a passive biped, like any oscillator, naturally channels incoming energy
into its preferred mode of motion.

9. ACTIVE STABILIZATION

Although passive running can be made stable by using a sufficiently fast
cadence, recovery from disturbances is still rather slow, and moreover provision
for fast cadence may be mechanically inconvenient. Consequently active
stabilization is desirable, and modulation of the energy supply, particularly by
stance thrusting, is suitable for the purpose. To choose an appropriate control
strategy we return to the linearized stride-to-stride equations (6). For control one
includes the gradient with respect to /,. Then the equations become:

Af, Af,
Aby,. R

AQc, | VS| AL, |+ Aly (18)
AQy AQy. ’

Alg, in Alg, 1

As an example take the cycle of figure 2, which has an unstable totter mode
(table 2). Its gradient matrices are as follows:

—1.36 0.002 0.01 0.013 0.59

R —1.26 1.39 0.52 0.70 0.91
VS8 =| —-1.73 0.47 0.26 0.27 1.46 |, (19)

—-6.34 —-337 —-292 —149 —0.06

051 —0.67 070 —-038 —0.30

1.88
S _| ot 2
a, | o4} (20)
6.27
3.60

To choose a control law, we apply the well-known linear-quadratic algorithm (see,
for example, Bryson & Ho (1975)). With equal weights on the control and state
variables, it specifies feedback gains as follows:

Ab.,

Aby.,
Al, =[—0.012 0.292 —0.027 0.147 0.228]/| AL, |. (21)

AQy

Alg,
Notice that to implement this control law one need measure the state variables
only at take-off. The motion during the rest of the stride is treated as a black box
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whose internal operations one can simply ignore. This makes for simple implemen-
tation, and satisfactorily stable stride-to-stride modes as listed in table 3. Moreover
this technique can be used not only to stabilize steady running, but also to vary
footfalls from one stride to the next (cf. McGeer (1988) for walking).

TABLE 4. ACTIVE STABILIZATION OF THE CYCLE OF FIGURE 2

mode 1 2 3 4,5
mag. + phase
eigenvalue —0.004 —0.52 0.70 0.22 +0.44
00T 0.06 0.03 0.05 0.19 +0
6FT —0.43 —0.33 0.74 0.48 +1.15
Q. —0.05 0.06 —0.59 0.34 F2.99
Q. 0.90 0.94 —-0.06 0.74 F1.93
le, 0.06 —-0.07 —-0.31 0.26 F0.10

10. LARGE PERTURBATIONS

Our small-perturbation stability analyses indicate the rate of recovery from a
disturbance, but they do not address the practical question of how much disturb-
ance the running cycle can tolerate. To investigate the latter question one must
numerically integrate the exact stride-to-stride function (1) over a series of strides.
A few examples will indicate the possibilities.

Consider first a passive cycle made inherently stable by stance damping. Figure
8 shows transients following perturbations in proportion to its totter-mode eigen-
vector. In the first example the perturbation is sufficiently small that the transient
is fit reasonably well by the linearized stride-to-stride equations (6). However in
the second the perturbation is doubled, and the transient departs markedly from
the linear fit. Moreover the first example shows a gradual convergence, corre-
sponding to the ‘slow’ totter eigenvalues; however, the second example shows a
gradual divergence, which leads eventually to toppling. Larger initial pertur-
bations, in either the positive or negative sense, topple the machine more quickly.

Now consider perturbation of an actively stabilized running cycle, as discussed
in §9. Figure 9 shows the transient following a perturbation in the most lightly
damped mode from table 3. If the small-perturbation analysis held then the
transient would show a monotonic convergence at z = 0.70; it doesn’t, however,
so the initial perturbation is not ‘small’. The perturbation is right at the toppling
limit, which is more sharply defined than in the preceding example. Excursions
within the limit are rapidly corrected by the active controller; excursions outside
the limit cause toppling after only a few strides.

11. FooT RADIUS

A further variation on the model of figure 1 deserves some attention : foot radius,
which affects the motion by moderating centrifugal effect. Figure 10 illustrates the
effects of varying foot radius on gait parameters and stability. Also shown is a
result based on approximating the rebound during stance. The approximation is
somewhat comparable to that of McMahon et al. (1987), but includes centrifugal
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Ficure 8. This example shows the transient following an initial excitation of the totter
mode of an inherently stable machine. Its totter eigenvalues are z = 0.96e*2". Hence the
transient involves a slow oscillatory decay. Symbols show the stance and swing angles at
take-off, as calculated using the exact stride function. Lines show the best fit by the
linearized stride-to-stride equations. In (a) the initial excitation is small, so the subsequent
transient is well fit by the linearized equations. However, in (b) the excitation is almost
large enough to make the machine stumble, and the linear fit is poor.

terms. Linearize the leg-compression equation (50) with respect to legs-vertical,

and take Qp = — € to be constant; the equation then becomes:
lo+ w2 Alg = 0] Aly,, (22)
where : w? =Ko — Q8 (23)

and, Algy = 1/0}2([ly— R — (1 —my) (ly—c)] 23 —1). (24)



128 T. McGeer

g’ take-off
£ 0.7t stance angle
S v 9V 9y vV VY 9 Y g VY
g 0.6 TV
g 05 R=0.1
1 1 1 1 11 1 1 1 1 i N 1 ] 1 1 1 1 1 1
g take-off Teve =3
E —05F p @ swing c=0.7
5 o o angle w=0
o) —o6r " fog o 8 my = 0.8
! B u RtJ - .
R T
Lt b b b1 L K =0.06
~ l y=0
- & 0.025} HH ﬂ 6
iE Olnoa. -
< EEO T JL== il B Rl U6 Rl W B
& —0.025F
° 1 1 1 1 1 L 1 1 i 1 1 1 i 1 i 1 1 1 11
time, t/7,

Ficure 9. Here the transient follows a perturbation on the cycle of figure 2. The amplitude
of the perturbation is just below the stumbling limit. This cycle is passively unstable, so we
stabilize actively via stride-to-stride adjustment of stance thrust (/,).

If Q. =0 then this is just the equation for vertical oscillation on the stance
spring. The equilibrium in this case is Al,, = —1/w}, or —mg/K ., in dimensional
terms. But if £ is non-zero, then centrifugal effect both ‘softens’ the spring and
shifts the equilibrium upward. In running centrifugal effect is normally more
powerful than gravity, so the spring would actually be stretched in equilibrium.
R affects the equilibrium position, and hence the stance time, as follows: solving
(22) for the bouncing motion, with initial conditions Al = 0, . = —iCT gives:

Al = Al (1 —cos wZT)—(ZcT/(UZ) sinw; 7. (25)
Stance ends when next Al = 0; thus 7, satisfies:
(1—cosw;7,)/sinw;7, = (—ZCT/wZ Al = —,. (26)

Solving for 7, gives:

7, = (1/w;) arcsin (2v,/1 +v%). (27)

Normally n/2 < w;7, <.

Evaluating (27) by using icT and Q. from the exact cycle calculation produces
the ‘stance approximation’ in figure 10. The approximation certainly isn’t perfect,
but it is close enough to demonstrate that centrifugal effect is the mechanism
whereby foot radius influences the running cycle. The direct result is an increase
in 7, with foot radius. This in turn has repercussions. First, if 6 is fixed then
increasing 7, implies decreasing speed, and decreasing speed implies reduced stab-
ility (cf. figure 4). Furthermore, as 7, = 7,47, is essentially fixed by the scissor
period, an increase in 7, causes a decrease in 7,. When 7, becomes too small the
cycle vanishes, so in the example of figure 10 passive running cannot be sustained
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Ficure 10. (@) shows the cycle timing and forward speed of bipeds having various foot
radii, and common values for all other parameters, including ¢, . The direct result of
increasing R is reduction in centrifugal effect. The dashed curve shows a consequent increase
in 7, predicted by an approximate one-dimensional model for the stance rebound; this is
verified by exact cycle calculations. Increasing stance time implies decreasing flight time
and speed ; at some point the flight phase becomes untenably short, and the cycle vanishes.
(b) A corresponding destabilization of the totter mode. The instability can be attributed to
the decrease in speed (cf. figure 4), which could be recovered by increasing 6., or K

leg®
with big feet. (However bigger feet can be accommodated by a compensatory
change in another parameter, for example increasing K,,.)

We expect that these effects are not limited to semicircular feet; other shapes

should produce similar results. The key factor is translation of the support point
during stance. In symmetric running this is:

Ay = 20, R. (28)

5 Vol. 240. B
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For example in human running one might take Ay to be the distance from the
heel to the ball of the foot. This is about 1/4 of the leg length, so with 6, = 0.6
as in figure 2, the equivalent R comes out to 0.2. Of course the differences between
this model and a human, in legs as well as feet, make this estimate rather rough.
The human jogging gait measured by McMahon et al. (1987) was best matched by
a passive model with R = 0.1 (figure 2).

12. CONCLUSION

Table 5 lists the parameters in our running model, and summarizes the effects
of parameter variations on gait. These provide for a considerable range of
behaviour, all based upon the passive bounce-and-scissor oscillation. Moreover,
Thompson & Raibert (1989) have shown with their monopedal model that an
entirely different mechanism can run by using the same dynamics. The question
of obvious interest for human locomotion is, what about a more anthropomorphic
model ? I suspect that the most important modifications in this direction, ordered
by priority, are as follows: (i) knees with torsional springs to replace the telescoping
legs; (ii) plantar-flexing feet, again with springs (see Ker et al. (1987) for evidence
of such springs in human feet); (iii) a torso; (iv) three-dimensionality, particularly
swinging of the hips.

As I mentioned earlier, studies of walking indicate that modifications of this
sort can be made without substantially disrupting the dynamics of the original
model. Miura & Shimoyama (1984) provide further demonstration of this point,
particularly with respect to decoupling of fore/aft and side-to-side motions. Hence

TABLE 5. MAJOR EFFECTS OF PARAMETER VARIATIONS ON THE RUNNING CYCLE

(Signs indicate the effect of a positive parameter increment; (), applies only for cycles
with dissipation.)

parameter 7, 7, T, V 7y stability impulse figure comments
Oc, + - 0 + (+) + (+) 4 effective for speed control
R - 4+ 0 = (=) - (—) 10 foot model
Tayr O o0 o0 0 o0 + (+) (McGeer with K, adjusted for
1989) constant w,
c 0O 0 0 0 (+) + (=) (McGeer with K, adjusted for
1989) constant w_,
w - - - + =% + - 6 compensates for d,, , I,
Mg 0o — — + (+) + (—) (McGeer with K, adjusted for
1989) constant w,,
K, + — 0 + 0 + (—) (McGeer effective for speed
1989) control
d)og + - 0 + + + + 5 main dissipation
mechanism
K., - - = 4+ 0 + 0 3 key stability parameter
through w,,
dysp o 0 o0 o0 + + - 6 must be compensated
by w
Iy -+ 0 - - - - 7 energy supply, active
stabilization
T: o 0 o0 o0 - + - (McGeer energy supply through

1989) torso leaning
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I am optimistic that more anthropomorphic models will prove capable of passive
running. With that established, the next question would be whether tendons and
other elastic structures have the stiffness and damping properties called for by the
mechanical model, and whether muscle action can thus be limited to pumping and
modulation of a fundamentally passive cycle. Such a line of study, if successful,
would ultimately allow accurate quantitative treatment of running physiology
from the governing dynamical principles, and perhaps suggest methods for
improving performance.

But whatever its success in explaining natural locomotion, the passive running
idea is certainly applicable to design of robots. Such machines are under devel-
opment, particularly by Raibert (1986), with a view towards locomotion over
terrain that is not accessible to wheeled vehicles. Legged machines designed to run
(or walk) passively promise mechanical simplicity, relative ease of control, and
lower specific resistance than alternative candidates, namely tank-like vehicles or
devices with large, soft wheels. The bounce-and-scissor oscillation would serve as
their foundation for mobility, to be pumped and modulated for adaptation to
rough terrain, e.g. to land on randomly spaced footholds, or to jump over obstacles.
Of course, to do this successfully, a robot would first have to be sufficiently
perceptive to recognize footholds and obstacles; unfortunately the perception
problem is much more difficult than the dynamics and control!

APPENDIX 1. SUMMARY OF DYNAMICS EQUATIONS

Tables 6 and 7 summarize the equations necessary for evaluating the stride
function (1). McGeer (1989) gives the derivations in full.

TABLE 6. EQUATIONS REQUIRED FOR EVALUATION OF THE STRIDE FUNCTION

phase flight stance
translational (38) (50)
rotational (39) (50)
constitutive (40) (17), (40), (16), (13)
geometric (30), (31), (32) (30), (31), (32), (33)

TABLE 7. EVENTS TRIGGERING A SWITCH BETWEEN BOUNDARY CONDITIONS

flight >stance  I,—1,, = 0 (43), (16) (foot strike)
stance ->flight  F,, = 0 (17) (force vanishing)

leg

APPENDIX 2. FLIGHT PHASE

Define:
P cos (29)
¢ sinfg |
- —cosy

= 30
g [ siny ] (30)

= —cos ¢ —sin 0
— (] — 31
"ac = (o C)[—sin00]+w[ cos O ]’ (31)
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- cos Oy sin O
rar = (g c)[sin GF]+w[—cos GF]’ (32)
N R] cos O
Tppg = + (1 —R)[, C], 33
PH [O C sin 6 (33)
T = My (r e+ (1= mieg) [P acl?), (34)
Iy =—miy Tyc Tap (35)

Then the position and velocity of the overall mass centre at the start of the
flight phase are:

To/cm = RO+ rpp + THicm

= gRHC+;PH+mleg(;HC+;HF)> (36)

(,57'
Ir 0/CM
CM

dt
=2 Zc +JRQ— (;PH _R92+m1eg ;HC) X -Qc_mleg ;HF X Qg
= ic_ (;PH + My ;HC) X Qo—Myeq ;HF X Q. (37)

The equations of motion are:
Vow = 4. (38)
i P ek e I A
Mieg "ur X "HE
Usually 7}, is chosen according to:
Thip = Kyip(Op—1—0¢) + i (25— 20). (40)

I have mentioned that the cadence is set by the scissor frequency, and this can
be calculated by linearizing the rotational equations (39) for small perturbations
from legs-parallel. The result is that:

Wge = V(thip)/(mleg(Tgyr‘i‘|;Hc|2)), (41)
and: é’sc = (wsc dhip)/(thip)' (42)

APPENDIX 3. IMPULSIVE LANDING

Landing occurs when the foot touches the ground ; mathematically the condition
is that:
1. — Yom —R—myeg(ryc+ 7ur) &
4 cos O

+R. (43)
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Then post-landing speeds then satisfy:

- -
(Tpr + Mieg Tac) X Vi

I Iy Lo [9% Iy Iy Q R N
Iye Iy I 'Q;rr =y Iy [Q—]+ Myeg Trr X Ven . (44)
Ie Ie 1 1L o ol™" £
¢ Vem
APPENDIX 4. STANCE PHASE
Define :
I, = mleg(”zyr‘i‘ l;PH +;HC|2) + (L —my,) |;PH|27 (45)
L = Mg (P + 17 5pl?), (46)
Iye = Meg ;HF';PH’ (47)
Lic=— (;PH + Mg ;HC) Yo (48)
Lip=—mye ;HFyAC (49)
Then:
— — " — —> N
Io Ipe g QC —R(rpg + Mg Tre) Y Myeg THF X TPH ,
2 — - > a C
Ioo Iy Iy Qh + — My (T X Tpy + BT g ) 0 [ 2]
I I, 1111 . > _ g
—(Tpu +Myeg Tc) - L+ R o8Oy —mye, Tur e |
- (;PH+m]eg ;HC) "E (;PH+mleg ;HC) Xg ™o
- . - —> hip
= —Myeg "ur " Lc 20 Q2+ Myeg "ur X 9 + | —Thp > (50)
0 ‘,ﬁC § Eeg 4

with K, given by (17).
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