4/65 Determine the magnitudes of all pin reactions for the frame loaded as shown.

Ans. A = 512 N, B = D = 1013 N

Problem 4/65

4/67 Compute the force supported by the pin at A for the slip-joint pliers under a grip of 30 lb.

Ans. A = 157.6 lb

Problem 4/67

4/81 A small bolt cutter operated by hand for cutting small bolts and rods is shown in the sketch. For a hand grip P=150 N, determine the force Q developed by each jaw on the rod to be cut.

Ans. Q = 2.7 kN

Problem 4/81

4/91 Determine the x- and y-components of all forces acting on each member of the loaded frame for the conditions (a) $\theta = 0$ and (b) $\theta = 30^{\circ}$. Force P is applied to the midpoint of member BC.

the midpoint of member
$$BC$$
.

Ans. (a) $A_x = B_x = C_x = D_x = \frac{P}{2}$
 $A_y = B_y = C_y = D_y = 0.289P$
 $E_x = E_y = 0$
(b) $A_x = B_x = C_x = 0.433P$
 $A_y = C_y = 0.75P$, $B_y = 1.25P$
 $D_x = 1.299P$, $D_y = 0.25P$, $E_x = 0.866P$
 $E_y = 1.5P$
(force magnitudes only)

Problem 4/91

*4/143 The structural members support the 3-kN load which may be applied at any angle θ from essentially -90° to $+90^{\circ}$. The pin at A must be designed to support the maximum force transmitted to it. Plot the force F_A at A as a function of θ and determine its maximum value and the corresponding angle θ .

Ans. $F_{A_{\max}} = 6$ kN at $\theta = -26.6^{\circ}$

Problem 4/143