
1 Write three matlab functions that solve the general

spring-mass IVP

We will consider the generalized linear system without damping which has an invertible mass
matrix:

M~̈x+K~x = 0 (1)

a [tarray xarray] = SpringmassNUM(tspan,x0,v0,K,M)

This can use ODE45 or your own ODE integrator, your choice. It should
work with arbitrary positive definite symmetric M and K matrices of any
size.

Equation 1 can be rearranged to form Equation 2, which can be numerically integrated. To
do this, the equation is first converted into two first order equations, as seen below.

~̈x = −M−1K~x (2)

~z = ~̇x (3)

~̇z = ~̈x = −M−1K~x (4)

It is worth noting that this is a linear system, and as such can be simulated in Matlab
using lsim() both faster and more accurately than using any numerical integration method.
However, the code below uses ode45().

1 function [tarray xarray] = SpringmassNUM(tspan,x0,v0,K,M)
2 % Numerically solves for the motion of the system defined by:
3 % M(xddot) + K x = 0
4 %
5 % Inputs:
6 % M,K − Matrices as defined in the equation above
7 % x0 − vector of initial positions
8 % v0 − vector of initial velocities
9 % tspan − times at which to output the state of the system. tspan must be

10 % a vector of length ≥ 2. The simulation will begin at time in the
11 % first element of tspan and end at the time in the last element.
12 % Outputs:
13 % tarray − array of times corresponding to xarray
14 % xarray − array of system states. The i'th row corresponds to the state
15 % of the system at the i'th element in tspan
16

17 % Make IC vectors column
18 x0 = x0(:);
19 v0 = v0(:);
20 z0 = [x0; v0];
21

22 n = length(x0);

1

23 % Define rhs function − returns the derivative of the state
24 % Because anonymous functions
25 zdot = @(¬,z) [z(n+1:end); −Mˆ−1*K*z(1:n)];
26

27 % Use ode45 to integrate
28 [tarray,xarray] = ode45(zdot,tspan,z0);
29 xarray = xarray(:,1:n); % only keep positions
30 end

b [tarray xarray] = SpringmassMinv(tspan, x0,v0,K,M)

This should use a superposition of normal mode solutions based in either
(your choice) eig(K,M) or eig(M-̂1*K).

First, we rearrange Equation 1 slightly, forming Equation 5.

~̈x+M−1K~x = 0 (5)

This is the form of the harmonic oscillator equation. Thus, we expect to see oscillatory
solutions composed of sines and cosines. Our assumed solution will be written:

~x(t) = x(ωt)~v = (Acos(ωt) +Bsin(ωt))~v (6)

Substituting in:

(−ω2I +M−1K)x(ωt)~v = 0 (7)

Since x(ωt) is just a scalar, it can be divided out. The result is exactly the eigenvalue
problem for the matrix M−1K, producing n eigenpairs (λi = ω2

i , ~vi). Each of the n pairs
represents a valid form for our assumed solution in Equation 6. Since the sum of solutions
to a homogeneous differential equation is also a solution to that differential equation, we can
write the general form of the solution to Equation 5 as:

~x(t) =
n∑
i=1

~vi(Aicos(ωit) +Bisin(ωit)) (8)

To find the constants Ai and Bi, we will make use of the initial conditions: ~x(0) = ~x0 and
~v(0) = ~v0. Applying these conditions, we get the equations:

~x0 =
n∑
i=1

~viAi = V ~A (9)

~v0 =
n∑
i=1

~viωiBi = V Λ1/2 ~B (10)

where V = [~v1|~v2|...|~vn] and Λ, having the eigenvalues λi on its diagonal, are the matrices

output by the eig() function and we have simply defined vectors ~A and ~B to contain the

2

coefficients Ai and Bi, respectively. Noting the fact that V −1 = V T and solving for these
coefficients, we obtain:

~A = V T~x0 (11)

~B = Λ−1/2V T~v0 (12)

Using these results with Equation 8, we have the analytical solution to Equation 1.

1 function [tarray xarray] = SpringmassMinv(tspan,x0,v0,K,M)
2 % Solves for the motion of the system defined by:
3 % M(xddot) + K x = 0
4 % using eigenvectors of Mˆ−1*K
5 %
6 % Inputs:
7 % M,K − Matrices as defined in the equation above
8 % x0 − vector of initial positions
9 % v0 − vector of initial velocities

10 % tspan − times at which to output the state of the system. tspan must be
11 % a vector of lenght ≥ 2. The simulation will begin at time in the
12 % first element of tspan and end at the time in the last element.
13 % Outputs:
14 % tarray − array of times corresponding to xarray
15 % xarray − array of system states. The i'th row corresponds to the state
16 % of the system at the i'th element in tspan
17

18 % Make IC vectors column
19 x0 = x0(:);
20 v0 = v0(:);
21

22 % Form timespan
23 if length(tspan) == 2
24 tarray = linspace(tspan(1),tspan(2));
25 else
26 tarray = tspan(:)';
27 end
28

29 [V,w2] = eig(Mˆ−1*K);
30 w = sqrt(diag(w2));
31

32 % Solve for coefficients
33 A = V'*x0;
34 B = w2ˆ(−1/2)*V'*v0;
35

36 % Vectorized linear combination of normal modes
37 cospart = repmat(A,1,length(tarray)).*cos(w*tarray);
38 sinpart = repmat(B,1,length(tarray)).*sin(w*tarray);
39 x = V*(cospart + sinpart);
40 xarray = x';
41 end

c [tarray xarray] = SpringmassSqrtM(tspan, x0,v0,K,M)

This should use a superposition of normal mode solutions based on the meth-
ods of lecture on 10/18 (using two changes of coordinates)

3

We can select a set of coordinates ~q = M1/2~x and multiply Equation 1 by M−1/2 to obtain:

~̈q +M−1/2KM−1/2q = ~̈q + K̃q = 0 (13)

K̃ has the convenient property that it has orthogonal eigenvectors. As such, P T K̃P = Λ,
where P has the eigenvectors of K̃ as its columns (in the same way V was defined with respect
to M

−1K in Section b) and Λ has the eigenvalues of K̃ on its diagonal (the are the same
as the eigenvalues of M−1K). We will exploit this fact by defining a new set of coordinates,
~r = P T~q. These are called “modal coordinates”. We substitute this into Equation 13 and
multiply by P T to obtain:

~̈r + P T K̃P~r = ~̈r + Λ~r = 0 (14)

Here we could proceed with the same analysis as in Section b to arrive at solutions for ~r(t),
but instead, we will recognize that, due to the diagonal nature of Λ, Equation 14 represents
a system of n decoupled differential equations with only a single degree of freedom. Each of
these equations can be written as in Equation 15.

r̈i + λiri = 0 (15)

We can now solve each of these n equations using familiar techniques for 1-DOF oscillators.
We can guess the form of the solutions:

ri(t) = Cicos(
√
λit) +Disin(

√
λit) (16)

In order to apply the initial conditions for our equations, we must convert them to modal
coordinates. By the definitions of ~r and ~q, we have the transformations between coordinates:

~r = P TM1/2~x (17)

~x = M−1/2P~r (18)

As such, we can transform the initial conditions with Equation 17 to obtain ~r0 = P TM−1/2~x0
and ~̇r0 = P TM−1/2~v0. We apply these initial conditions to Equation 15 to obtain the
coefficients as

Ci = r0,i (19)

Di =
ṙ0,i√
λi

(20)

We have solved for ~r(t) by finding its individual components. To obtain the solution ~x(t),
we simply apply the transformation in Equation 18.

4

1 function [tarray xarray] = SpringmassSqrtM(tspan,x0,v0,K,M)
2 % Solves for the motion of the system defined by:
3 % M(xddot) + K x = 0
4 % using modal coordinates
5 %
6 % Inputs:
7 % M,K − Matrices as defined in the equation above
8 % x0 − vector of initial positions
9 % v0 − vector of initial velocities

10 % tspan − times at which to output the state of the system. tspan must be
11 % a vector of lenght ≥ 2. The simulation will begin at time in the
12 % first element of tspan and end at the time in the last element.
13 % Outputs:
14 % tarray − array of times corresponding to xarray
15 % xarray − array of system states. The i'th row corresponds to the state
16 % of the system at the i'th element in tspan
17

18 % Make IC vectors column
19 x0 = x0(:);
20 v0 = v0(:);
21

22 % For time span
23 if length(tspan) == 2
24 tarray = linspace(tspan(1),tspan(2));
25 else
26 tarray = tspan(:)';
27 end
28

29 Msqrt = Mˆ(−1/2);
30 Ktwid = Msqrt*K*Msqrt;
31 [P,w2] = eig(Ktwid);
32 w = sqrt(diag(w2));
33

34 % Transform ICs
35 r0 = P'*Msqrtˆ−1*x0;
36 rd0 = P'*Msqrtˆ−1*v0;
37

38 % Solve for coefficients
39 C = r0;
40 D = rd0./w;
41

42 % Solution for each 1DOF oscillator
43 r = repmat(C,1,length(tarray)).*cos(w*tarray) +...
44 repmat(D,1,length(tarray)).*sin(w*tarray);
45

46 % Transform back to x−coordinates
47 x = M*P*r;
48 xarray = x';
49 end

d For some fairly complex problem show that your three methods
agree as well as they should.

This comparison includes the functions described below in Section 2.

5

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

D
is

p
la

c
e

m
e

n
t

fr
o

m
 E

q
u

ili
b

ir
u

m

3 Mass System
x

0
 = [0.09, −0.48, −0.07] v

0
 = [−0.19, −0.34, −0.32]

Mass 1

Mass 2

Mass 3

Integrated Solution

Minv Solution

Msqrt Solution

Figure 1: Solutions for a three mass system with a nonsingular K matrix using the methods
described above that do not handle singular matrices.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

x 10
−4 Error between Numerical and Minv methods

0 1 2 3 4 5 6 7 8 9 10
0

2

4

x 10
−4 Error between Numerical and Msqrt methods

E
u

c
lid

e
a

n
 N

o
rm

e
d

 E
rr

o
r

0 1 2 3 4 5 6 7 8 9 10
0

1

2
x 10

−16 Error between Msqrt and Minv methods

Time (s)

Figure 2: Associated error for the system in Figure 1

6

0 1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time

D
is

p
la

c
e

m
e

n
t

fr
o

m
 E

q
u

ili
b

ir
u

m

5 Mass System
x

0
 = [−0.04, 0.16, 0.27, −0.15, 0.16] v

0
 = [−0.08, 0.34, 0.33, −0.24, 0.11]

Mass 1

Mass 2

Mass 3

Mass 4

Mass 5

Integrated Solution

Minv Solution

Msqrt Solution

Figure 3: Solutions for a five mass system with a nonsingular K matrix using the methods
described above that do not handle singular matrices. Note that this system is not simply
five masses connected with springs in series, but instead has some springs that connect
non-adjacent masses.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

x 10
−4 Error between Numerical and Minv methods

0 1 2 3 4 5 6 7 8 9 10
0

2

4

x 10
−4 Error between Numerical and Msqrt methods

E
u

c
lid

e
a

n
 N

o
rm

e
d

 E
rr

o
r

0 1 2 3 4 5 6 7 8 9 10
0

1

2
x 10

−16 Error between Msqrt and Minv methods

Time (s)

Figure 4: Associated error for the system in Figure 3

7

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time

D
is

p
la

c
e

m
e

n
t

fr
o

m
 E

q
u

ili
b

ir
u

m

3 Mass System
x

0
 = [−0.15, −0.35, 0.09] v

0
 = [−0.24, −0.46, 0.25]

Mass 1

Mass 2

Mass 3

Integrated Solution

Minv Solution

Msqrt Solution

Figure 5: Solutions for a three mass system with a nonsingular K matrix using the methods
described below that employ sine and cosine functions to find the motion when K may be
singular.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

x 10
−4 Error between Numerical and Minv methods

0 1 2 3 4 5 6 7 8 9 10
0

2

4

x 10
−4 Error between Numerical and Msqrt methods

E
u

c
lid

e
a

n
 N

o
rm

e
d

 E
rr

o
r

0 1 2 3 4 5 6 7 8 9 10
0

1

2
x 10

−16 Error between Msqrt and Minv methods

Time (s)

Figure 6: Associated error for the system in Figure 5

8

0 1 2 3 4 5 6 7 8 9 10
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Time

D
is

p
la

c
e

m
e

n
t

fr
o

m
 E

q
u

ili
b

ir
u

m

3 Mass System
x

0
 = [−0.47, 0.11, −0.14] v

0
 = [−0.45, −0.01, −0.31]

Mass 1

Mass 2

Mass 3

Integrated Solution

Minv Solution

Msqrt Solution

Figure 7: Solutions for a three mass system with a singular K matrix using the methods
described below that employ sine and cosine functions to find the motion when K may be
singular.

0 1 2 3 4 5 6 7 8 9 10
0

1

2
x 10

−3 Error between Numerical and Minv methods

0 1 2 3 4 5 6 7 8 9 10
0

1

2
x 10

−3 Error between Numerical and Msqrt methods

E
u

c
lid

e
a

n
 N

o
rm

e
d

 E
rr

o
r

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
x 10

−15 Error between Msqrt and Minv methods

Time (s)

Figure 8: Associated error for the system in Figure 7

9

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

Time

D
is

p
la

c
e

m
e

n
t

fr
o

m
 E

q
u

ili
b

ir
u

m

5 Mass System
x

0
 = [0.28, −0.21, 0.19, 0.06, −0.10] v

0
 = [−0.44, 0.28, −0.16, 0.11, 0.24]

Mass 1

Mass 2

Mass 3

Mass 4

Mass 5

Integrated Solution

Minv Solution

Msqrt Solution

Figure 9: Solutions for a five mass system with a singular K matrix using the methods
described below that employ sine and cosine functions to find the motion when K may be
singular.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
x 10

−3 Error between Numerical and Minv methods

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
x 10

−3 Error between Numerical and Msqrt methods

E
u

c
lid

e
a

n
 N

o
rm

e
d

 E
rr

o
r

0 1 2 3 4 5 6 7 8 9 10
−1

0

1
Error between Msqrt and Minv methods

Time (s)

Figure 10: Associated error for the system in Figure 9

10

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time

D
is

p
la

c
e

m
e

n
t

fr
o

m
 E

q
u

ili
b

ir
u

m

3 Mass System
x

0
 = [−0.10, 0.12, −0.35] v

0
 = [−0.12, −0.34, 0.26]

Mass 1

Mass 2

Mass 3

Integrated Solution

Minv Solution

Msqrt Solution

Figure 11: Solutions for a three mass system with a singular K matrix using the meth-
ods described below that employ exponential functions to find the motion when K may be
singular.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
x 10

−3 Error between Numerical and Minv methods

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
x 10

−3 Error between Numerical and Msqrt methods

E
u

c
lid

e
a

n
 N

o
rm

e
d

 E
rr

o
r

0 1 2 3 4 5 6 7 8 9 10
0

1

2
x 10

−15 Error between Msqrt and Minv methods

Time (s)

Figure 12: Associated error for the system in Figure 11

11

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

D
is

p
la

c
e

m
e

n
t

fr
o

m
 E

q
u

ili
b

ir
u

m

5 Mass System
x

0
 = [−0.09, −0.40, −0.39, 0.28, −0.21] v

0
 = [0.10, 0.46, −0.07, 0.19, 0.26]

Mass 1

Mass 2

Mass 3

Mass 4

Mass 5

Integrated Solution

Minv Solution

Msqrt Solution

Figure 13: Solutions for a five mass system with a nonsingular K matrix using the meth-
ods described below that employ exponential functions to find the motion when K may be
singular.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
x 10

−3 Error between Numerical and Minv methods

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
x 10

−3 Error between Numerical and Msqrt methods

E
u

c
lid

e
a

n
 N

o
rm

e
d

 E
rr

o
r

0 1 2 3 4 5 6 7 8 9 10
0

1

2
x 10

−15 Error between Msqrt and Minv methods

Time (s)

Figure 14: Associated error for the system in Figure 13

12

0 1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0

1

Time

D
is

p
la

c
e

m
e

n
t

fr
o

m
 E

q
u

ili
b

ir
u

m

5 Mass System
x

0
 = [−0.40, −0.37, 0.05, −0.01, 0.39] v

0
 = [0.30, 0.23, −0.45, −0.43, −0.41]

Mass 1

Mass 2

Mass 3

Mass 4

Mass 5

Integrated Solution

Minv Solution

Msqrt Solution

Figure 15: Solutions for a five mass system with a singular K matrix using the meth-
ods described below that employ exponential functions to find the motion when K may be
singular.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

x 10
−4 Error between Numerical and Minv methods

0 1 2 3 4 5 6 7 8 9 10
0

2

4

x 10
−4 Error between Numerical and Msqrt methods

E
u

c
lid

e
a

n
 N

o
rm

e
d

 E
rr

o
r

0 1 2 3 4 5 6 7 8 9 10
0

1

2
x 10

−15 Error between Msqrt and Minv methods

Time (s)

Figure 16: Associated error for the system in Figure 15

13

Matlab code used to produce the above plots:

1 % Driver file
2

3 % n = 3;
4 % K = [2 −1 0; −1 2 −1; 0 −1 2]; % For K−nonsingular cases
5 % K = [1 −1 0; −1 2 −1; 0 −1 1]; % For K−singular cases
6

7 % Alternatives
8 n = 5;
9 % K = [3 −1 −1 0 0; −1 2 0 −1 0; −1 0 2 0 −1; 0 −1 0 2 −1; 0 0 −1 −1 3];

10 K = [2 −1 0 0 0; −1 2 −1 0 0; 0 −1 2 0 0; 0 0 0 1 −1; 0 0 0 −1 1];
11

12 M = eye(n);
13 x0 = rand(n,1)−.5; % Random initial conditions from −.5 to .5
14 v0 = rand(n,1)−.5;
15

16 tspan = linspace(0,10,1000);
17

18 % Get solutions
19 [¬,xNum] = SpringmassNUM(tspan,x0,v0,K,M);
20

21 % K−Nonsingular methods
22 % [¬,xMinv] = SpringmassMinv(tspan,x0,v0,K,M);
23 % [¬,xMsqrt] = SpringmassSqrtM(tspan,x0,v0,K,M);
24

25 % K−Singular methods
26 % [¬,xMinv] = SpringmassMinvKSingular(tspan,x0,v0,K,M);
27 % [¬,xMsqrt] = SpringmassSqrtMKSingular(tspan,x0,v0,K,M);
28

29 % Exponential methods (handles K−singular)
30 [¬,xMinv] = SpringmassMinvExponential(tspan,x0,v0,K,M);
31 [¬,xMsqrt] = SpringmassSqrtMExponential(tspan,x0,v0,K,M);
32

33 % Error Analysis
34 errNumMinv = xNum−xMinv;
35 errNumMinv = sqrt(sum(errNumMinv.ˆ2,2));
36

37 errNumMsqrt = xNum−xMsqrt;
38 errNumMsqrt = sqrt(sum(errNumMsqrt.ˆ2,2));
39

40 errMsqrtMinv = xMsqrt−xMinv;
41 errMsqrtMinv = sqrt(sum(errMsqrtMinv.ˆ2,2));
42

43 % Plot
44 figure(1)
45 clf
46 hNUM = plot(tspan',xNum);
47 hold on
48 hMinv = plot(tspan',xMinv,'x');
49 hMsqrt = plot(tspan',xMsqrt,'o');
50

51 xlabel('Time')
52 ylabel('Displacement from Equilibirum')
53

54 vecPrint = '';
55 Names = cell(1,n);
56 for i = 1:n
57 vecPrint = [vecPrint ', %3.2f']; %#ok<AGROW>
58 Names{i} = sprintf('Mass %d',i);
59 end
60 vecPrint = vecPrint(3:end);
61

14

62 title({sprintf('%d Mass System',n),...
63 sprintf(['x 0 = [' vecPrint '] v 0 = [' vecPrint ']'],x0,v0)})
64 legend([hNUM; hNUM(1); hMinv(2); hMsqrt(3)],Names{:},...
65 'Integrated Solution','Minv Solution','Msqrt Solution')
66

67 figure(2)
68 clf
69 subplot(3,1,1)
70 plot(tspan,errNumMinv)
71 title('Error between Numerical and Minv methods')
72 subplot(3,1,2)
73 plot(tspan,errNumMsqrt)
74 title('Error between Numerical and Msqrt methods')
75 ylabel('Euclidean Normed Error')
76 subplot(3,1,3)
77 plot(tspan,errMsqrtMinv)
78 title('Error between Msqrt and Minv methods')
79 xlabel('Time (s)')
80

81 % Animate
82 figure(3)
83 AnimateSolution(1:n,xNum,tspan)

e Animate the solution (using moving dots, circles or squares,
your choice).

The following Matlab code will animate the solved spring mass system. It uses circles.

1 function AnimateSolution(x0,xarray,tspan)
2 % Animates an n−mass spring system's 1 dimensional motion in the current
3 % figure
4 %
5 % Inputs:
6 % x0 − Array of equilibrium positions
7 % xarray − Array of displacements for each mass in the system relative to
8 % equilibrium. The i'th row corresponds to the positions at the
9 % i'th time in tspan

10 % tspan − array of times. tspan must include ALL time steps to be
11 % plotted, not just the start and end times. The animation
12 % assumes that all time steps in tspan are equal, and cannot
13 % accurately animate a timestep shorter than .01s
14

15 nt = length(tspan);
16 n = size(xarray,2);
17

18 % Determine time step
19 dt = tspan(2)−tspan(1);
20

21 % Find absolute positions of the masses
22 xarray = xarray + repmat(x0(:)',nt,1);
23

24 xMax = max(max(xarray));
25 xMin = min(min(xarray));
26

27 % Set up plot
28 hArray = zeros(n,1);
29 hold on
30 for i = 1:n
31 hArray(i) = plot(xarray(1,i),0,'ko');

15

32 end
33 axis([xMin xMax −1 1]);
34

35 for i = 1:nt
36 for j = 1:n
37 set(hArray(j),'XData',xarray(i,j));
38 end
39 pause(dt)
40 end

2 Extra things for 5730 students

a Make the functions above work even if K is singular (has some
modes with zero frequency)

a.a [tarray xarray] = SpringmassNUM(tspan, x0,v0,K,M)

No changes are required.

a.b [tarray xarray] = SpringmassMinv(tspan, x0,v0,K,M)

If there exists some i for which ωi = 0, then Equation 8 is no longer valid. Instead, we have

~x(t) =
∑

i∈{i|λi 6=0}

~vi(Aicos(ωit) +Bisin(ωit)) +
∑

i∈{i|λi=0}

~vi(Ai +Bit) (21)

Equation 9 is still valid, but Equation 10 must be replaced by considering two cases. Since
we see that, in either case, ~v0 ∝ V ~B, we will create an intermittent variable ~B′ = V T~v0. ~B
is related to ~B′ by

Bi =

{
B′i
ωi

λi 6= 0

B′i λi = 0
(22)

Equations 9, 21, and 22 can be combined for the solution to Equation 1.

1 function [tarray xarray] = SpringmassMinvKSingular(tspan,x0,v0,K,M)
2 % Solves for the motion of the system defined by:
3 % M(xddot) + K x = 0
4 % using eigenvectors of Mˆ−1*K. Handles singular K matrices.
5 %
6 % Inputs:
7 % M,K − Matrices as defined in the equation above
8 % x0 − vector of initial positions
9 % v0 − vector of initial velocities

10 % tspan − times at which to output the state of the system. tspan must be
11 % a vector of lenght ≥ 2. The simulation will begin at time in the
12 % first element of tspan and end at the time in the last element.
13 % Outputs:
14 % tarray − array of times corresponding to xarray
15 % xarray − array of system states. The i'th row corresponds to the state
16 % of the system at the i'th element in tspan

16

17

18 % Make IC vectors column
19 x0 = x0(:);
20 v0 = v0(:);
21

22 % Form timespan
23 if length(tspan) == 2
24 tarray = linspace(tspan(1),tspan(2));
25 else
26 tarray = tspan(:)';
27 end
28

29 [V,w2] = eig(Mˆ−1*K);
30 w2 = diag(w2);
31 w2(abs(w2) < 1e−10) = 0;
32 w = sqrt(w2);
33

34 oM = w26=0; % Oscillitory mode indices
35 rM = w2 == 0; % Rigid mode indices
36

37 % Solve for coefficients
38 A = V'*x0;
39 Bprime = V'*v0;
40 B = Bprime;
41 B(oM) = Bprime(oM)./w(oM); % Logical indexing, also used below
42

43 % Linear combination of the normal modes
44 % Because cos(0) = 1, we can use cospart even for the case of a rigid mode
45 cospart = repmat(A,1,length(tarray)).*cos(w*tarray);
46 % In order sin(0) = 0, but we need the rigid mode to have a t. We will have
47 % to break this out into two cases
48 sinpart(oM,:) = repmat(B(oM),1,length(tarray)).*sin(w(oM)*tarray);
49 sinpart(rM,:) = B(rM)*tarray;
50

51 x = V*(cospart + sinpart);
52 xarray = x';
53 end

a.c [tarray xarray] = SpringmassSqrtM(tspan, x0,v0,K,M)

The process of adjusting the modal solution for rigid modes is very similar to what we saw
above. Equation 16 is no longer valid for all i. In particular, if we look at Equation 15 with
λi = 0, we have r̈i = 0, which implies a constant velocity solution. Our solution for the
decoupled modes then becomes

ri(t) =

{
Cicos(

√
λit) +Disin(

√
λit) λi 6= 0

Ci +Dit λi = 0
(23)

We now see that Equation 19 is still valid, while Equation 20 must be reformulated for two
cases. Much like Equation 22, we have

Di =

{
ṙ0,i√
λi

λi 6= 0

ṙ0,i λi = 0
(24)

and we once again apply the transformation in Equation 18 to solve Equation 1.

17

1 function [tarray xarray] = SpringmassSqrtMKSingular(tspan,x0,v0,K,M)
2 % Solves for the motion of the system defined by:
3 % M(xddot) + K x = 0
4 % using modal coordinates. Handles singular K matrices
5 %
6 % Inputs:
7 % M,K − Matrices as defined in the equation above
8 % x0 − vector of initial positions
9 % v0 − vector of initial velocities

10 % tspan − times at which to output the state of the system. tspan must be
11 % a vector of lenght ≥ 2. The simulation will begin at time in the
12 % first element of tspan and end at the time in the last element.
13 % Outputs:
14 % tarray − array of times corresponding to xarray
15 % xarray − array of system states. The i'th row corresponds to the state
16 % of the system at the i'th element in tspan
17

18 % Make IC vectors column
19 x0 = x0(:);
20 v0 = v0(:);
21

22 % For time span
23 if length(tspan) == 2
24 tarray = linspace(tspan(1),tspan(2));
25 else
26 tarray = tspan(:)';
27 end
28

29 Msqrt = Mˆ(−1/2);
30 Ktwid = Msqrt*K*Msqrt;
31 [P,w2] = eig(Ktwid);
32 w2 = diag(w2);
33 w2(abs(w2) < 1e−10) = 0;
34 w = sqrt(w2);
35

36 oM = w26=0; % Oscillitory mode indices
37 rM = w2 == 0; % Rigid mode indices
38

39 % Transform ICs
40 r0 = P'*Msqrtˆ−1*x0;
41 rd0 = P'*Msqrtˆ−1*v0;
42

43 % Solve for coefficients
44 C = r0;
45 D = rd0;
46 D(oM) = rd0(oM)./w(oM); % Logical indexing. Also used below.
47

48 % Find solution for each 1DOF oscillator
49 % Because cos(0) = 1, we can use cospart even for the case of a rigid mode
50 cospart = repmat(C,1,length(tarray)).*cos(w*tarray);
51 % In order sin(0) = 0, but we need the rigid mode to have a t. We will have
52 % to break this out into two cases
53 sinpart(oM,:) = repmat(D(oM),1,length(tarray)).*sin(w(oM)*tarray);
54 sinpart(rM,:) = D(rM)*tarray;
55

56 r = cospart + sinpart;
57

58 % Transform back to x−coordinates
59 x = M*P*r;
60 xarray = x';
61 end

18

b Instead of using cosine and sine for the normal modes, use expo-
nentials and do complex math to solve for the initial conditions.

b.a [tarray xarray] = SpringmassNUM(tspan, x0,v0,K,M)

Not Applicable

b.b [tarray xarray] = SpringmassMinv(tspan, x0,v0,K,M)

We can begin from Equation 5, as we did for the solution using sines and cosines. This time,
we assume a solution of the form

~x(t) = x(ωt)~v = aeωt~v (25)

This results in the eigenvalue problem

(ω2I +M−1K)~v = 0 (26)

which differs from what we had in Equation 7 by only a sign. As a result, we now have n
eigenpairs (λi = ω2

i < 0, ~vi), which implies that the ωi’s are imaginary. Further, while we
were previously able to take advantage of the odd/even properties of the sine and cosine
functions to ignore the sign on ωi, we must now take into account both the positive and
negative values. We now write our general solution:

~x(t) =
n∑
i=1

~vi(aie
ωit + bie

−ωit) (27)

If we wish to also factor in the case where K is singular, we note that ωi = −0 = +0 behaves
like a repeated root, and we find:

~x(t) =
∑

i∈{i|λi 6=0}

~vi(aie
ωit + bie

−ωit) +
∑

i∈{i|λi=0}

~vi(ai + bit) (28)

We note that the coefficients ai and bi are generally complex, while those having i ∈ {i|λi =
0} being purely real, since ~x(t) is purely real. Applying our initial conditions, we have:

~x0 =
∑

i∈{i|λi 6=0}

~vi(ai + bi) +
∑

i∈{i|λi=0}

~viai (29)

~v0 =
∑

i∈{i|λi 6=0}

~viωi(ai − bi) +
∑

i∈{i|λi=0}

~vibi (30)

Concerning only i ∈ {i|λi 6= 0}, we can see from Equation 29 that, since ~x0 is real, ai + bi is
real. Equivalently, we can say that the imaginary parts of ai and bi are opposite. Equation
30 similarly tells us that ai − bi is purely imaginary, since ωi is imaginary and ~v0 real.

19

Equivalently, the real parts of ai and bi are equal. As such, we see that ai and bi are complex
conjugates. The equations are now:

~x(t) =
∑

i∈{i|λi 6=0}

~vi(aie
ωit + a∗i e

−ωit) +
∑

i∈{i|λi=0}

~vi(ai + bit) (31)

~x0 =
∑

i∈{i|λi 6=0}

~vi2Re[ai] +
∑

i∈{i|λi=0}

~viai = V ∗~a (32)

~v0 =
∑

i∈{i|λi 6=0}

~viωi2Im[ai] +
∑

i∈{i|λi=0}

~vibi = V ∗∗~b (33)

The bookkeeping is somewhat tricky, but V ∗ and V ∗∗ both have columns that are multiples
of linearly independent eigenvectors, and thus they are invertible. We can solve for ~a, which
contains the real parts of those ai corresponding to oscillatory modes and the ai for rigid
modes, and ~b, which contains the imaginary parts of those ai corresponding to oscillatory
modes and the bi for rigid modes, by simple matrix operations. It is worth noting that a
similar formulation would allow us to express Equation 22 as a matrix operation.

1 function [tarray xarray] = SpringmassMinvExponential(tspan,x0,v0,K,M)
2 % Solves for the motion of the system defined by:
3 % M(xddot) + K x = 0
4 % using eigenvectors of Mˆ−1*K. Handles singular K matrices. Uses
5 % exponential solutions.
6 %
7 % Inputs:
8 % M,K − Matrices as defined in the equation above
9 % x0 − vector of initial positions

10 % v0 − vector of initial velocities
11 % tspan − times at which to output the state of the system. tspan must be
12 % a vector of lenght ≥ 2. The simulation will begin at time in the
13 % first element of tspan and end at the time in the last element.
14 % Outputs:
15 % tarray − array of times corresponding to xarray
16 % xarray − array of system states. The i'th row corresponds to the state
17 % of the system at the i'th element in tspan
18

19 % Make IC vectors column
20 x0 = x0(:);
21 v0 = v0(:);
22

23 % Form timespan
24 if length(tspan) == 2
25 tarray = linspace(tspan(1),tspan(2));
26 else
27 tarray = tspan(:)';
28 end
29

30 [V,w2] = eig(Mˆ−1*K);
31 w2 = diag(w2);
32 w2(abs(w2) < 1e−10) = 0;
33 w = sqrt(−w2);
34

35 oM = w26=0; % Oscillitory mode indices
36 rM = w2 == 0; % Rigid mode indices
37

20

38 % Solve for coefficients
39 Vstar(:,oM) = 2*V(:,oM); % Logical indexing. Used throughout.
40 Vstar(:,rM) = V(:,rM);
41 a = Vstarˆ−1*x0;
42

43 Vsstar(:,oM) = 2*V(:,oM).*repmat(w(oM)'/1j,length(w),1);
44 Vsstar(:,rM) = V(:,rM);
45 b = Vsstarˆ−1*v0;
46

47 % Linear combination of the normal modes
48 pospart = zeros(length(w),length(tarray));
49 pospart(oM,:) = repmat(a(oM) + b(oM)*1j ,1,length(tarray)).*exp(w(oM)*tarray);
50

51 negpart = zeros(length(w),length(tarray));
52 negpart(oM,:) = repmat(a(oM) − b(oM)*1j ,1,length(tarray)).*exp(−w(oM)*tarray);
53

54 constpart = zeros(length(w),length(tarray));
55 constpart(rM,:) = repmat(a(rM),1,length(tarray));
56

57 linpart = zeros(length(w),length(tarray));
58 linpart(rM,:) = b(rM)*tarray;
59

60 x = V*(pospart + negpart + constpart + linpart);
61 xarray = x';
62 end

b.c [tarray xarray] = SpringmassSqrtM(tspan, x0,v0,K,M)

We now start with Equation 15, and now assume solutions

ri(t) = cie
ωit (34)

and find that ωi = ±
√
−λi. If we apply the above process used for the MDOF system to

each of our decoupled SDOF modes, we will find the solutions:

ri(t) =

{
cie

ωit + c∗i e
−ωit λi 6= 0

ci + dit λi = 0
(35)

and by applying the initial conditions we get:

r0,i =

{
2Re[ci] λi 6= 0
ci λi = 0

(36)

ṙ0,i =

{
2ωiIm[ci] λi 6= 0
di λi = 0

(37)

which can be solved in each individual case by simple rearrangement. Once again, we apply
the transformation in Equation 18.

1 function [tarray xarray] = SpringmassSqrtMExponential(tspan,x0,v0,K,M)
2 % Solves for the motion of the system defined by:
3 % M(xddot) + K x = 0
4 % using modal coordinates. Handles singular K matrices. Uses
5 % exponential solutions.

21

6 %
7 % Inputs:
8 % M,K − Matrices as defined in the equation above
9 % x0 − vector of initial positions

10 % v0 − vector of initial velocities
11 % tspan − times at which to output the state of the system. tspan must be
12 % a vector of lenght ≥ 2. The simulation will begin at time in the
13 % first element of tspan and end at the time in the last element.
14 % Outputs:
15 % tarray − array of times corresponding to xarray
16 % xarray − array of system states. The i'th row corresponds to the state
17 % of the system at the i'th element in tspan
18

19 % Make IC vectors column
20 x0 = x0(:);
21 v0 = v0(:);
22

23 % For time span
24 if length(tspan) == 2
25 tarray = linspace(tspan(1),tspan(2));
26 else
27 tarray = tspan(:)';
28 end
29

30 Msqrt = Mˆ(−1/2);
31 Ktwid = Msqrt*K*Msqrt;
32 [P,w2] = eig(Ktwid);
33 w2 = diag(w2);
34 w2(abs(w2) < 1e−10) = 0;
35 w = sqrt(−w2);
36

37 oM = w26=0; % Oscillitory mode indices
38 rM = w2 == 0; % Rigid mode indices
39

40 % Transform ICs
41 r0 = P'*Msqrtˆ−1*x0;
42 rd0 = P'*Msqrtˆ−1*v0;
43

44 % Solve for coefficients
45 c(oM) = r0(oM)/2; % Logical indexing, used throughout
46 c(rM) = r0(rM);
47 c = c(:); % logical indexing creates a row vector, make it a column
48 d(oM) = rd0(oM)./(2*w(oM)*1j);
49 d(rM) = rd0(rM);
50 d = d(:); % logical indexing creates a row vector, make it a column
51

52 % Solution for each oscillator
53 pospart = zeros(length(w),length(tarray));
54 pospart(oM,:) = repmat(c(oM) + d(oM)*1j, 1,length(tarray)).*exp(w(oM)*tarray);
55

56 negpart = zeros(length(w),length(tarray));
57 negpart(oM,:) = repmat(c(oM) − d(oM)*1j, 1,length(tarray)).*exp(−w(oM)*tarray);
58

59 constpart = zeros(length(w),length(tarray));
60 constpart(rM,:) = repmat(c(rM),1,length(tarray));
61

62 linpart = zeros(length(w),length(tarray));
63 linpart(rM,:) = d(rM)*tarray;
64

65 r = pospart + negpart + constpart + linpart;
66

67 % Transform back to x−coordinates
68 x = M*P*r;
69 xarray = x';
70 end

22

23

	Write three matlab functions that solve the general spring-mass IVP
	[tarray xarray] = SpringmassNUM(tspan,x0,v0,K,M)
	[tarray xarray] = SpringmassMinv(tspan, x0,v0,K,M)
	[tarray xarray] = SpringmassSqrtM(tspan, x0,v0,K,M)
	For some fairly complex problem show that your three methods agree as well as they should.
	Animate the solution (using moving dots, circles or squares, your choice).

	Extra things for 5730 students
	Make the functions above work even if K is singular (has some modes with zero frequency)
	[tarray xarray] = SpringmassNUM(tspan, x0,v0,K,M)
	[tarray xarray] = SpringmassMinv(tspan, x0,v0,K,M)
	[tarray xarray] = SpringmassSqrtM(tspan, x0,v0,K,M)

	Instead of using cosine and sine for the normal modes, use exponentials and do complex math to solve for the initial conditions.
	[tarray xarray] = SpringmassNUM(tspan, x0,v0,K,M)
	[tarray xarray] = SpringmassMinv(tspan, x0,v0,K,M)
	[tarray xarray] = SpringmassSqrtM(tspan, x0,v0,K,M)

