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1 Mission

The steer-by-wire (SBW) subteam is building a new self-balancing bicycle that
aid users in riding a bike. We will implement a steer-by-wire method of steering,
in which the user remotely, rather than directly, controls the turning of the bi-
cycle’s front wheel. The front wheel itself will turn according to the lean of the
bicycle, and the steering input from the user. The bike alone is self- balancing
but can also be steered by the user.

Last semester we were able to obtain parts for this bicycle, design and build
the mechanical system, and perform preliminary testing of the front motor con-
troller. We tested the gains of our proportional-derivative (PD) controller so
that a rider could lean to successfully ride and steer the bike by the end of the
semester. It had a stiff handlebar and the bike itself was self-balancing.

This semester we obtained a new motor and motor controller, designed a new
power transmission system for the front wheel’s rotation, mounted the handle-
bar, and implemented user input from the handlebar’s rotation. We tested our
PD controller gains and began using the handlebar’s position and the bike’s lean
rate to control the front wheel. This allowed the user to ride a self-balancing
bike and also be able to steer the bike by turning the handle bar

Future work of the subteam will include fine-tuning the gains of the PD
controller, testing the gains of the balance controller, implementing a second
motor to supply torsional resistance to the handlebar, and developing a method
to test quantitatively whether a rider can stabilize better on our bike.

2 New Hardware

Conrad McCarthy: cdm223

We replaced our brushless motor and chain drive transmission to the front
wheel with a brushed motor and a belt drive. Since we control the wheel be-
tween a small angle range and at a relatively low angular velocity, we noticed
our previous motor produced a distinctive ticking effect that destabilized our
wheel’s motion at certain positions. The ticks occurred at angles where a gap
existed between the motor’s stator windings. At these positions, the motor’s
rotor experiences a lower magnetic force comparatively. Therefore, when we
attempted to stabilize the front wheel at a position which corresponded to one
of these ticks, the nature of the motor and PD controller produce an undesirable
jitter. Our new brushed motor does not produce the same effect. Refer to our
Appendix for information regarding our motor specifications (6.1) and our new
motor controller (??).

We needed to adjust our gear ratio between the motor and the front wheel
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because of new motor’s gear box specifications (refer to Appendix 6.1). We
decided to abandon our chain drive and use a belt drive instead because it is
smoother and quieter.

We secured our handlebar to the bicycle by designing an assembly which
connects to the motor support assembly (Figure 1). By doing so, we could en-
sure that our handlebar is collinear to the shaft of our front wheel. This allows
us to insert a coupling to connect the handlebar and the front wheel so we can
ride and test the bike in its normal operative state. We therefore have a ref-
erence to analyze how well our self-balancing and steer-by-wire systems work.
As a temporary means of providing torsional resistance to the handlebar, we
attached a linear spring to the handlebar’s collar and to one of its support plates.

Figure 1: CAD model of Steer-by-Wire mechanical assembly1

To read our handlebar’s position, we use another rotary encoder. For sim-
plicity, we use the same encoder as the front wheel’s encoder. Reference our
Appendix (6.2) for a discussion on how an optical encoder works and how our
bike implements two encoders simultaneously.

Finally, we added protective cases for our motor controller and inertial mea-
suring unit (IMU). Our Appendix (6.3) details the designs of these cases.

1Email Conrad McCarthy (cdm223@cornell.edu) for access to the CAD file.
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3 Code Structure

Dylan Meehan: dem292

The Steer-By-Wire bike has 3 modes.

1. Normal Bicycle Mode: The handlebar is mechancially coupled to the front
wheel, as in a normal bicycle.

2. Steer-By-Wire Mode: The front wheel of the bike mimics the handlebar
one-to-one. There is no physical connection between the handlebar and
front wheel. There is no balance controller.

3. Balance Controller Active Mode: The balance controller steers the front
wheel in order to keep the bike balanced. The front handlebar inputs to
the balance controller to indirectly control the direction of the bicycle.

Mode 1 can be enabled or disabled by inserting a mechanical coupling between
the front wheel and the handlebar. Mode 2 is enabled by setting the boolean
variable IS_BALANCE_CONTROLLER_ON to false in the file ROS_ARDUINO_WRAPPER.
Setting IS_BALANCE_CONTROLLER_ON to true enables mode 3.

3.1 Steer-By-Wire Mode (Mode 2)

Figure 2 shows a flowchart of the software In Steer-By-Wire mode.
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Figure 2: Flowchart of Steer-By-Wire Mode

symbol description Name in software
δactual position of front wheel encoder_position_W

α position of handlebar encoder_position_H

pwm front wheel commanded speed PWM_front

DIR front wheel commanded direction DIR

voltage voltage to front DC motor

The Front Motor PD controller attempts to minimize the error between δ and
α.

3.2 Balance Controller Active (Mode 3)

Figure 3 shows a flowchart of the software with the balance controller running.
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Figure 3: Controller Structure with Balance Controller Engaged
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symbol description Name in software
δactual position of front wheel encoder_position_W

α position of handlebar encoder_position_H

φ lean angle of bike frame imu_data.angle

φ̇ lean angle rate imu_data.rate

δ̇ output steer angle rate from balance controller desiredVelocity

δ commanded steer angle desired_pos_W

pwm front wheel commanded speed PWM_front

DIR front wheel commanded direction DIR

voltage voltage to front DC motor

The balance controller outputs δ̇ such that the bike does not fall. The Euler
Integrator multiplies δ̇ by the timestep to find δ, the position the wheel should be
at at the following timestep. The PD controller attempts to minimize the error
between δ and δactual. α is passed to the balance controller as the parameter
δds - see Section 4.

4 Balance Controller Development

Dylan Meehan: dem292

The Steer-By-Wire bicycle uses the same form of a balance controller as the
prototype autonomous bicycle. The linear equation of the controller is below.
See Autonomous Bicycle Team Fall 2016 report chapter 1 for a more detailed
explanation of this controller.

δ̇ = k1 · φ + k2 · φ̇ + k3 · (δactual − δds) (1)

The variables in the linear controller are defined as:

δ̇ steer angle rate of front wheel
φ lean angle
δactual steer angle of front wheel

φ̇ lean angle rate
δds Desired steer input to balance controller. δds = 0 when the bicycle

is commanded to balance in a straight line.

The constants (gains) of the controller are k1, k2, and k3. These are found
via MATLAB optimization using the same script used for the prototype au-
tonomous bicycle. See Fall 2017 autonomous bicycle report for more. The
following parameters are specific to the Steer-By-Wire bike.
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p.l 1.067 distance between front wheel and rear wheel contact points (m)
p.b 0.5 distance from ground contact point to center of gravity projected

onto ground (m)
p.h 1.00 height of bicycle center of mass (m)
p.c 0.13 Trail- distance between front wheel contact point and front steer-

ing axis projected onto ground (m)

The balance controller optimizer tested 750000 gains. The bike’s speed was
set at 3m/s. A 1◦ error in the lean angle was toggled on and off every second.
Each set of gains produced a balance score and a path score. δdesired steer = 0.
See Autonomous Bicycle Fall 2017 report for discussion of the scoring system.

The best gains judged by balance score are:
k1 = 7
k2 = 77
k3 = −6

The best gains judged by path score are:
k1 = 48
k2 = 17
k3 = −47

Moving forward, these gains need to be tested on the Steer-By-Wire bicycle2.

5 Future Work

5.1 Prototype Balance Testing

Dylan Meehan: dem292

The balance controller needs to be tested on the physical prototype. Data
from these tests need to be compared with the MATLAB simulation. A rasp-
berry Pi records this data. The Arduino prints relevant information over a USB
serial port to the raspberry Pi which saves the data to a .csv file.

Data should be compared between the 3 different bike modes: 1) Normal
bicycle with mechanical coupling between front wheel and handlebar. 2) Steer-
By-Wire bike with one-to-one control between the handlebar and front wheel.
3) Steer-By-Wire bicycle with balance controller active. A scoring system needs
to be chosen to compare each mode. One scoring system is to sum the lean angle
rates over time. The lowest score would then indicate the best balancing bicycle.

2An excel spreadsheet called 750000vals_3speed_test.xlsx contains the full results of the
simulation. The spreadsheet is in the Fall 2017 Steer-By-Wire google drive.
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5.2 Torsional Resistance to Handlebar

Conrad McCarthy: cdm223

Bike riders rely on torque feedback from the handlebar to balance when
riding. In future, we will need an active method of controlling the resistance
supplied to the handlebar so we can more accurately replicate the normal feeling
of riding a bike in our steer-by-wire system. The simplest way to implement
this resistance would be to mimic the power transmission system (motor and
belt drive) of our front wheel for our handlebar. Figure 4 demonstrates one way
of achieving this mechanically while still using our current support system for
the front wheel’s motor.

Figure 4: CAD of bike’s assembly with motor and power transmission to
handlebar
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We can measure the amount of torque which our front wheel experiences
through the implementation of a current sensor or strain gauges. The current
sensor would measure the amount of current which our front motor draws. Al-
ternatively, we would place strain gauges on the handlebar’s shaft to measure
the angle of twist and calculate torque. We could also use a torque sensor but
they are expensive and not likely to be within our budget range.

6 Appendix

6.1 Design Decisions for Front Motor

David Miron: dm585

6.1.1 Brushed DC Motors

The motor we are using is a 24V Brushed DC Motor from Anaheim Automa-
tion. Model number is BDSG-83-125. There is a 7.5:1 gearbox on the motor.
This gearbox gears the motor down. The motor is geared down again by a 2:1
belt drive. See HERE for specification sheet

This motor is a low cost Brushed DC motor that is marketed for high volume
applications and has a high torque. The rated torque is 250 oz-in. The mini-bike
has a rated torque of 240 on-in after taking the gear box into account. With
our belt drive taken to account, our motor has a torque that is over double the
mini-bike’s motor. We felt that this torque was high enough to accommodate
the larger wheel and increased weight.

6.1.2 Motor Controller

We used two different motor controllers this semester. Initially we used an Ana-
heim Automation motor controller, but after breaking it deiced to use a Pololu
motor controller. (this is the same as the controller on the mini-bike and there
are many around the lab)

The model number of the motor controller from Anaheim Automation is
MBDC050-050101. It is made for use with brushed motors, and was purchased
because it works with our motor and is not very expensive. We ultimately broke
this controller by changing the output we sent to the direction pin on the con-
troller without changing the output sent to the run/stop pin on the controller.
In general motor controllers take a number of inputs to decide what output is
appropriate to drive the motor. The run/stop pins tell the controller whether
we want the motor to be moving. By the design of the controller it is necessary
to stop the motor, change the direction input, and then run the motor. We
did not stop our motor when we changed direction, and this caused too much
current to flow in the board, and broke some of the integrated circuits on the
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motor controllers circuit board.

We fixed this broken controller but have decided to continue using the Pololu
controller. The break was a blown MOSFET, which was visibly damaged.

See HERE for specification sheets.
The Pololu Motor Controller is able to drive the steering motor which uses

24V power supply. The main reason that we choose the Pololu is that there are
plenty of them available in the lab, and since they work well with the mini-bike’s
brushed motor, we don’t have to purchase new models.

The Pololu motor controller is powered by a 5V output from the Arduino. It
gets voltage to control the motor from our 24V battery. There are two control
signal inputs (PWMH and DIR). PWMH controls the speed of the motor and
takes in a PWM. We use an output directly from the Arduino for this. The DIR
pin controls whether the motor spins clockwise or counter-clockwise. We control
this input with a PWM directly from the Arduino that is either set to 0 or 255.
(255 is clockwise and 0 is counterclockwise) The motor controllers outputs are
OUTA and OUTB, which are control signals transmitted to the motor.

6.2 Arduino Registers: Reading Values from Two En-
coders

Conrad McCarthy: cdm223

6.2.1 Hardware Overview

We implemented two optical encoders simultaneously to read the position of the
front wheel and the handlebar. Our encoders are quadature encoders which are
characterized by three channels, A, B and Z. Each channel outputs a positive
and negative signal, dubbed +A/-A, +B/-B, and +Z/-Z, for the purpose of
filtering noisy data during signal processing.

An optical encoder uses an internal light and an opaque disc with markings
that block and unblock the light as the inner shaft rotates. Photodiodes convert
the shutter pattern of light to electrical signals. The photodiodes of the A and
B channels read sets markings spaced around the circumfrance of the inner disc
and respectively offset from one another. As the shaft rotates, the A and B
channels output two square waves shifted by 90 degrees. The phase shift of the
two waves indicates the direction of the rotation during signal processing and
the period of the wave can be used to caluclate angular velocity. The Z chan-
nel reads only one marking on the circumfrance and subsequently outputs one
pulse per revolution. This signal, called the index of rotation, serves to define
the relative position of the inner shaft.

12

http://www.anaheimautomation.com/products/brush/brush-driver-controller-item.php?sID=184&serID=3&pt=i&tID=104&cID=25


The signals from our optical encoders are processed by line recievers on the
PCB and quadature decoders native to the Arduino Due. The line recievers
filter (separately) the +A/-A, +B/-B, and +Z/-Z signals to single A, B, and
Z signals. The Arduino’s decoders in turn read these three signals to process
position or velocity data according to their software-enabled registers.

See HERE for the Quadatrue Decoder specification sheet.

6.2.2 Software Overview

The Arduino IDE is a tool which simplifies the coding structure of the AVR
microcontroller. The inherited Arduino library includes a vast array of pack-
ages and functions which makes it easy to define pin functionality at a high
level. To access and control certain intricacies of the microcontroller, such as
its peripheral devices, a deeper knowledge of the AVR architecture is required.

I recommend the following tutorial to learn the underpinnings of coding in
Arduino IDE: A Tour of the Arduino Internals: How Does Hello World Actually
Work?

In the setup of our optical encoders, we differentiate between variables which
read signals from the front wheel’s encoder and the handlebar’s encoder by the
annexation of ’ W’ and ’ H’, respectively. We first define the physical Arduino
pins which read the A, B, and Z values from the two line receivers. We call
the function ”digitalPintoBitMask()” as necessary to convert the physical pin
number to an 8-bit byte.

The quadrature decoders (QDEC) of the Arduino are peripheral devices. In
order to use a perpheral device, one must first disable the normal input and
output functionallity of the pins that the device is connected to. One achieves
this by manipulating Parallel Input/Output (PIO) Controllers of the AVR.

See HERE for specification sheet for Using a 32-bit AVR PIO Controller
The Arduino has multiple PIO controllers. For the pins connected to our

front wheel encoder we manipulate Controller B and for the pins connected to
our handlebar encoder we manipulate Controller C. We set the PIO Disable
Register (PDR) and the AB Select Register (ABSR) of these controllers to the
bit-masked pins of our encoder signals (A, B, and Z) such that the peripheral
functionality of the pins are activated and the correct device (QDEC) is chosen.
These specific registers are included in the ”instance” header files of the Atmel
SAM3U package of the Arduino Due’s firmware.

The QDECs are present in the Arduino’s Timer Counter (TC) which requires
the configuration of several clock peripherals to operate. We activate clock pe-
ripherals TC0, TC1, and TC2 by setting Peripheral Clock Enable Registers 0
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and 1 (PCER0/PCER1) to the correct pin IDs (PID 27-35). These registers
are found in the Power Management Controller (PMC) instance of the Atmel
SAM3u package of the Due’s firmware.

Finally, we configure TC0 and TC2 such that they store Counter Values
(CV) corresponding to the position and index of our front wheel encoder and
handlebar encoder, respectively. As stated in the QDEC datasheet, we set
Channel Mode Register 0 (CMR0) of TC0 and TC2 to hexadecimal 0x101 (or
equivalently, number 5). We then configure the Block Mode Registers (BMR)
of both TC0 and TC2 to activate the QDEC in its position measure mode (op-
posed to velocity measure mode) with no preset filters. To capture the index
value, we set the QDEC Interrupt Enable Register (QIER) to HIGH (1). The
index for the wheel and handlebar are stored in variables REG TC0 CV1 and
REG TC2 CV1, respectively. Angular position relative to the index for the
wheel and handlebar are stored in REG TC0 CV0 and REG TC2 CV0, respec-
tively.

6.3 Protective Cases for Hardware

Max Kester : mk2368

Considerations such as wire length, spacial constraints, and function led to
the placement of circuit boards at various locations on the bike. This meant
that electronics not housed in the rear compartment would be exposed to the
environment. Aiming to mitigate any possible damage and prevent any foreign
objects from interacting with these components, we decided to design and build
cases which would cover the electronics.

Once designed, the final part would be 3-D printed using Acrylonitrile Bu-
tadiene Styrene (ABS) or Polylactic Acid (PLA), the two materials available in
the printing lab. This is the most efficient method because rapid-prototyping
allows us to quickly make new models after changes have been made. For the
case, either material would suffice and thus no material considerations and anal-
ysis was made.

6.3.1 Motor Controller

Since we were unsure of where we wanted to mount the MC itself, the case could
only cover and be screwed from the top of the board, to allow quick and easy
mounting on the bottom to the bike frame. Another important design feature
was that the two LEDs, current limiter, and outgoing wire ports had to be ac-
cessible. Following the geometry and dimensions of the circuit board from an
online schematic, the remaining design considerations were flexible.
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Figure 5: Design 1, Fusion 360

The result is a simple, block-based design. Two walls a tenth of an inch
thick (2.54mm) are joined by a canopy to cover the top. Olav recommended
a 2-3 millimeter minimum material thickness from prior experience to prevent
any breaking in the material. Per the online schematic, the screw holes are
0.156 inches in diameter, and the cover encompasses the 2 x 3.5 inch board.
The shape of the cover allows for access from above to the LEDs and current
limiter, and horizontal access to the wire ports, which are all conveniently lo-
cated on the edges of the circuit board. The advantage of this design is that it
is simple and effective. A disadvantage of this design is that the access space
for the LEDs/limiter is wide and exposes unnecessary parts of the board to the
environment.

The first design functioned just as intended, but a second design would be
necessary for two reasons. Firstly, we wanted to add engraved labels on the top
surface of the case for each wire port for clarity. Secondly, I wanted to maxi-
mize protection by minimizing open space and having holes only where needed.
Lastly, I wanted to utilize different Fusion 360 design techniques to further fa-
miliarize myself with the program.
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Figure 6: Design 2, Fusion 360

Not only was the design process different but it was easier; I used the “shell”
feature to remove space and create the case cavity. This meant rather than
having to add and connect blocks into a desired shape, I was able to remove
negative space with one command. I rounded the corners just to make handling
the object smoother. The LED and current limiter hole diameters are 0.1 inches
greater than the measured diameter of related component. Compared to Design
1, this model appears more elegant, probably due to its more efficient design
process. Additionally, this model covers all the non-essential space on the board
and provides users with information on its contents.

However, a manufacturing limitation created two errors in the final product.
The 3D printer is not extremely accurate on this small scale, and tends to add
material on the inside of hole features. Thus, the screw holes were misaligned
and the engraved labels were illegible and the case was essentially useless. The
necessary edits – enlarging the screw holes’ diameters and the size of the letters
– have been made and the new version was successfully applied.

Figure 7: Applied Case
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6.3.2 Inertial Measurement Unit

Continuing with the task of semi-waterproofing and protecting our important
and exposed circuit boards, the Inertial Measurement Unit (IMU) was next. The
specifications would remain the same – it needed to cover as much electronics as
possible while accommodating its geometry and operation. This proved to be
more complicated than the previous case for two reasons: various components
broke the boundary of the board, and the board is screw mounted from the
bottom. This meant that the case could not be screw mounted (like the MC
case) to restrict z-axis motion.

The mounting technique we explored was a clamp system that would hold
with compressive forces created by the case geometry. Getting the basic shape
was easy based on the IMU dimensions, but optimizing certain dimensions was
necessary to ensure easy and unobstructed clamping. This proved to be quite
an iterative process, because multiple variables – clamp length, distance apart,
and stiffness – all contributed to the case’s performance.

Figure 8: Case Cross Section, Fusion 360

Printing multiple half-inch thick sections of the space with ranging dimen-
sions allowed us to narrow down the desired magnitude of stiffness for the
clamps. To allow for accurate transmission of these tested forces/interactions
with the board, the rest of the case was completed by leaving slits for the clamp
arms, which leaves them unconstrained by the walls and free to strain as neces-
sary.
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Figure 9: Design 1, Fusion 360

18



Applying a full case was more challenging than the testing sections; four
clamps needed to be in position versus two, and the walls prevented that from
being easy. Additionally, increased weight from the added material made the
case heavier and slightly more unstable. Thus, further minor revisions were
needed.

6.4 Conclusion and Future Applications

Conclusion:
The goal of this past year was to design, develop and build a working steer-
by-wire prototype to aid in further testing of the interaction between a bike
and it’s rider. Throughout the project we ran into some issues with the front
motor and controller as we found it difficult to control and later broke some of
the new components. The bike is currently ride-able, self-stabilizes and can be
controlled by user input through leaning and steering.

Future applications:
Going forward there a many tests that can be conducted. Without the han-
dlebar torque feedback for the user it will be interesting to see how easy the
bike is to ride. With some tests and data-logging we can also see if our balance
controller can balance the bike better than a human and also how they work
together. This bike can be tested with people who have never learned how to
ride a bike to see if the bike really does self-balance with a rider.

19


	Mission
	New Hardware
	Code Structure
	Steer-By-Wire Mode (Mode 2)
	Balance Controller Active (Mode 3)

	Balance Controller Development
	Future Work
	Prototype Balance Testing
	Torsional Resistance to Handlebar

	Appendix
	Design Decisions for Front Motor
	Brushed DC Motors
	Motor Controller

	Arduino Registers: Reading Values from Two Encoders
	Hardware Overview
	Software Overview

	Protective Cases for Hardware
	Motor Controller
	Inertial Measurement Unit

	Conclusion and Future Applications 


