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9.1.15 Consider a force F.t/ acting on
a cart over a 3 second span. In case (a),
the force acts in two impulses of one sec-
ond duration each as shown in fig. 9.1.15.
In case (b), the force acts continuously for
two seconds and then goes to zero. Given
that the mass of the cart is 10 kg, v.0 s/ D
0, and F0 D 10N, for each force profile,

a) Find the speed of the cart at the end
of 3 seconds, and

b) Find the distance travelled by the
cart in 3 seconds.

Comment on your answers for the two
cases.
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4 Chapter 9.1. Force and motion in 1D Problem 9.1.16

9.1.16 A car of mass m is accelerated by
applying a triangular force profile shown
in fig. 9.1.16(a). Find the speed of the car
at t D T seconds. If the same speed is
to be achieved at t D T seconds with a
sinusoidal force profile, F.t/ D Fs sin �t

T
,

find the required force magnitude Fs . Is
the peak higher or lower? Why?
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Chapter 9.1. Force and motion in 1D Problem 9.1.22 5

9.1.22 A grain of sugar falling through
honey has a negative acceleration propor-
tional to the difference between its veloc-
ity and its ‘terminal’ velocity, which is a
known constant vt . Write this sentence as
a differential equation, defining any con-
stants you need. Solve the equation assum-
ing some given initial velocity v0.
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6 Chapter 9.1. Force and motion in 1D Problem 9.1.26

9.1.26 A bullet penetrating flesh slows
approximately as it would if penetrating
water. The drag on the bullet is about
FD D c�wv

2A=2 where �w is the den-
sity of water, v is the instantaneous speed
of the bullet, A is the cross sectional area
of the bullet, and c is a drag coefficient
which is about c � 1. Assume that the
bullet has mass m D �lAL where �l is
the density of lead, A is the cross sec-
tional area of the bullet and L is the length
of the bullet (approximated as cylindrical).
Assume m D 2 grams, entering velocity
v0 D 400m=s, �l=�w D 11:3, and bullet

diameter d D 5:7mm.

a) Plot the bullet position vs time.

b) Assume the bullet has effectively
stopped when its speed has dropped
to 5m=s, what is its total penetra-
tion distance?

c) According to the equations implied
above, what is the penetration dis-
tance in the limit t !1?

d) How would you change the model
to make it more reasonable in its
predictions for long time?
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Chapter 9.1. Force and motion in 1D Problem 9.1.26 (continued) 9
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10 Chapter 9.2. Energy methods in 1D Problem 9.2.3

9.2.3 A force F D F0 sin.ct/ acts on a
particle with mass m D 3 kg which has
position x D 3m, velocity v D 5m=s at
t D 2 s. F0 D 4N and c D 2= s. At
t D 2 s evaluate (give numbers and units):

a) a,

b) EK,

c) P ,

d) PEK,

e) the rate at which the force is doing
work.
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12 Chapter 9.2. Energy methods in 1D Problem 9.2.10

9.2.10 A kid (m D 90 lbm) stands on a
h D 10 ft wall and jumps down, acceler-
ating with g D 32 ft=s2. Upon hitting the
ground with straight legs, she bends them
so her body slows to a stop over a distance
d D 1 ft. Neglect the mass of her legs. As-
sume constant deceleration as she brakes
the fall.

a) What is the total distance her body

falls?

b) What is the potential energy lost?

c) How much work must be absorbed
by her legs?

d) What is the force of her legs on her
body? Answer in symbols, numbers
and numbers of body weight (i.e.,
find F=mg).
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Chapter 9.2. Energy methods in 1D Problem 9.2.11 13

9.2.11 In traditional archery, when pulling
an arrow back the force increases approxi-
mately linearly up to the peak ‘draw force’
Fdraw that varies from about Fdraw D
25 lbf for a bow made for a small person to
about Fdraw D 75 lbf for a bow made for
a big strong person. The distance the ar-
row is pulled back, the draw length `draw ,
varies from about `draw D 2 ft for a small
adult to about 30 inch for a big adult. An

arrow has mass of about 300 grain (1 grain
� 64:8milli gm, so an arrow has mass of
about 19:44 � 20 gm � 3=4 ounce). Give
all answers in symbols and numbers.

a) What is the range of speeds you can
expect an arrow to fly?

b) What is the range of heights an ar-
row might go if shot straight up (it’s
a bad approximation, but for this
problem neglect air friction)?
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Chapter 9.2. Energy methods in 1D Problem 9.2.16 15

9.2.16 The power available to a very
strong accelerating cyclist over short peri-
ods of time (up to, say, about 1 minute) is
about 1 horsepower. Assume a rider starts
from rest and uses this constant power. As-
sume a mass (bike + rider) of 150 lbm, a
realistic drag force of :006 lbf=. ft= s/2v2.
Neglect other drag forces.

a) What is the peak (steady state)
speed of the cyclist?

b) Using analytic or numerical meth-
ods make an accurate plot of speed
vs. time.

c) What is the acceleration as t ! 1
in this solution?

d) What is the acceleration as t ! 0
in your solution?

e) How would you improve the model
to fix the problem with the answer
above?
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18 Chapter 9.3. Elementary vibration analysis Problem 9.3.6

9.3.6 A spring k with rest length `0 is at-
tached to a mass m which slides friction-
lessly on a horizontal ground as shown.
At time t D 0 the mass is released from
rest with the spring stretched a distance d .
Measure the mass position x relative to the
wall.

a) What is the acceleration of the mass
just after release?

b) Find a differential equation which
describes the horizontal motion x of
the mass.

c) What is the position of the mass at
an arbitrary time t?

d) What is the speed of the mass when
it passes through x D `0 (the posi-
tion where the spring is relaxed)?
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22 Chapter 9.3. Elementary vibration analysis Problem 9.3.10

9.3.10 Mass m hangs from a spring
with constant k and which has the length
l0 when it is relaxed (i.e., when no mass is
attached). It only moves vertically.

a) Draw a Free Body Diagram of the
mass.

b) Write the equation of linear mo-
mentum balance.

c) Reduce this equation to a standard
differential equation in x, the posi-
tion x of the mass.

d) Verify that one solution is that x.t/
is constant at x D l0 Cmg=k.

e) What is the meaning of that solu-
tion? (That is, describe in words
what is going on.)

f) Define a new variable Ox D x�.l0C
mg=k/. Substitute x D Ox C .l0 C
mg=k/ into your differential equa-
tion and note that the equation is
simpler in terms of the variable Ox.

g) Assume that the mass is released
from an an initial position of x D
D. What is the motion of the mass?

h) What is the period of oscillation of
this oscillating mass?

i) Why might this solution not make
physical sense for a long, soft
spring if the initial stretch is large.
In other words, what is wrong with
this solution if D > `0 C 2mg=k?
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Chapter 9.3. Elementary vibration analysis Problem 9.3.12 23

9.3.12 A person jumps on a trampoline.
The trampoline is modeled as having an
effective vertical undamped linear spring
with stiffness k D 200 lbf= ft. The person
is modeled as a rigid mass m D 150 lbm.
g D 32:2 ft=s2.

a) What is the period of motion if the
person’s motion is so small that her
feet never leave the trampoline?

b) What is the maximum amplitude of
motion (amplitude of the sine wave)
for which her feet never leave the
trampoline?

c) (harder) If she repeatedly jumps so
that her feet clear the trampoline by
a height h D 5 ft, what is the pe-

riod of this motion (note, the con-
tact time is not exactly half of a vi-
bration period)? [Hint, a neat graph
of height vs time will help.]
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Problem 9.12: A person jumps on a tram-
poline.
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24 Chapter 9.3. Elementary vibration analysis Problem 9.3.12 (continued)
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26 Chapter 9.4. Coupled motion in 1D Problem 9.4.14

The primary emphasis of this section
is setting up correct differential equations
(without sign errors) and solving these
equations on the computer.

9.4.14 x1.t/ and x2.t/ are measured po-
sitions on two points of a vibrating struc-
ture. x1.t/ is shown. Some candidates
for x2.t/ are shown. Which of the x2.t/
could possibly be associated with a normal
mode vibration of the structure? Answer
“could” or “could not” next to each choice
and briefly explain your answer (If a curve
looks like it is meant to be a sine/cosine
curve, it is.)
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Chapter 9.4. Coupled motion in 1D Problem 9.4.17 27

9.4.17 Two masses are connected to fixed
supports and each other with the three
springs and dashpot shown. The force F
acts on mass 2. The displacements x1 and
x2 are defined so that x1 D x2 D 0 when
the springs are unstretched. The ground is
frictionless. The governing equations for
the system shown can be written in first
order form if we define v1 � Px1 and
v2 � Px2.

a) Write the governing equations in a
neat first order form. Your equa-
tions should be in terms of any or all
of the constants m1, m2, k1, k2,k3,
C , the constant force F , and t . Get-
ting the signs right is important.

b) Write computer commands to find
and plot v1.t/ for 10 units of time.
Make up appropriate initial condi-
tions.

c) For constants and initial conditions
of your choosing, plot x1 vs t for
enough time so that decaying erratic
oscillations can be observed.
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30 Chapter 9.4. Coupled motion in 1D Problem 9.4.23

9.4.23 For the three-mass system shown,
assume x1 D x2 D x3 D 0 when all
the springs are fully relaxed. One of the
normal modes is described with the initial
condition .x10; x2; x3/ D .1; 0;�1/.

a) What is the angular frequency !
for this mode? Answer in terms of
L;m; k, and g. (Hint: Note that
in this mode of vibration the middle
mass does not move.)

b) Make a neat plot of x2 versus x1
for one cycle of vibration with this
mode.
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Chapter 9.5. 1D Collisions Problem 9.5.6 33

9.5.6 Before a collision two particles,
mA D 7 kg and mB D 9 kg, have veloc-
ities of v�

A
D 6m=s and v�

B
D 2m=s. The

coefficient of restitution is e D :5. Find
the impulse of mass A on mass B and the
velocities of the two masses after the colli-
sion.
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36 Chapter 9.5. 1D Collisions Problem 9.5.6 (continued)

Problem 9.84
If you assumed v+

A = 6 m/s, than the following answers will change
d) 6 kg m/s
f) 14 kg m/s
g) −4 kg m/s. You get this by solving v+

B = 7 m/s
h) 4 kg m/s
j) 67 J
k) 0.2

1
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Chapter 9.5. 1D Collisions Problem 9.5.10 37

9.5.10 A basketball with mass mb is
dropped from height h onto the hard solid
ground on which it has coefficient of resti-
tution eb . Just on top of the basketball,
falling with it and then bouncing against
it after the basketball hits the ground, is a
small rubber ball with mass mr that has a
coefficient of restitution er with the bas-
ketball.

a) In terms of some or all of mb , mr ,

h, g, eb and er how high does the
rubber ball bounce (measure height
relative to the collision point)?

b) Assuming the coefficients of resti-
tution are less than or equal to
one, for given h, what mass and
restitution parameters maximize the
height of the bounce of the rubber
ball and what is that height?
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10.1.22 An object C of mass 2 kg is pulled
by three strings as shown. The acceleration
of the object at the position shown is a D�
�0:6O{ � 0:2 O| C 2:0 Ok

�
m=s2.

a) Draw a free body diagram of the
mass.

b) Write the equation of linear mo-
mentum balance for the mass. Use
�’s as unit vectors along the strings.

c) Find the three tensions T1, T2, and
T3 at the instant shown. You may
find these tensions by using hand
algebra with the scalar equations,

using a computer with the matrix
equation, or by using a cross prod-
uct on the vector equation.
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Chapter 10.1. Dynamics of a particle in space Problem 10.1.26 41

10.1.26 Bungy Jumping. In a relatively
safe bungy jumping system, people jump
up from the ground while being pulled up
by a rope that runs over a pulley at O and
is connected to a stretched spring anchored
at B. The ideal pulley has negligible size,
mass, and friction. For the situation shown
the spring AB has rest length `0 D 2m and
a stiffness of k D 200N=m. The inexten-
sible massless rope from A to P has length
`r D 8m, the person has a mass of 100 kg.
Take O to be the origin of an xy coordinate
system aligned with the unit vectors O{ and
O|

a) Assume you are given the position
of the person*r D x O{C y O| and the
velocity of the person v D Px O{ C
Py O|. Find her acceleration in terms
of some or all of her position, her
velocity, and the other parameters
given. Then use the numbers given,
where supplied, in your final an-
swer.

b) Given that bungy jumper’s initial
position and velocity are *r0 D
1mO{�5m O| and v0 D 0 write com-
puter commands to find her position
at t D �=

p
2 s.

c) Find the answer to part (b) with
pencil and paper (that is, find an
analytic solution to the differential
equations, a final numerical answer
is desired).

Filename:s97p1-3

k

m

10 m

A
O

P

B

= 10 m/s2

ground, no contact
after jump off

g

ı̂

ĵ
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44 Chapter 10.1. Dynamics of a particle in space Problem 10.1.30

10.1.30 The equations of motion from
problem ?? are nonlinear and cannot be
solved in closed form for the position of
the baseball. Instead, solve the equations
numerically. Make a computer simulation
of the flight of the baseball, as follows.

a) Convert the equation of motion into
a system of first order differential
equations.

b) Pick values for the gravitational
constant g, the coefficient of resis-
tance b, and initial speed v0, solve
for the x and y coordinates of the
ball and make a plots its trajectory
for various initial angles �0.

c) Use Euler’s, Runge-Kutta, or other
suitable method to numerically in-
tegrate the system of equations.

d) Use your simulation to find the ini-
tial angle that maximizes the dis-
tance of travel for ball, with and
without air resistance.

e) If the air resistance is very high,
what is a qualitative description for
the curve described by the path of
the ball? Show this with an accurate
plot of the trajectory. (Make sure to
integrate long enough for the ball to
get back to the ground.)
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Chapter 10.1. Dynamics of a particle in space Problem 10.1.30 (continued) 45

10.30 (continued) 
b). See attached codes and results 
%problem 10.30(a) 
  
function solution1030a 
%solution to 10.30 
%September 23,2008 
b=1; m=1; g=10; % give values for b,m and g here 
%Initial conditions and time span 
tspan=[0:0.001:5]; %integrate for 50 seconds 
x0=0; 
y0=0;      %initial position 
v0=50;    %magnitude of initial velocity (m/s) 
theta0=20;  %angle of initial velocity (in degrees) 
  
z0=[x0,y0,v0*cos(theta0*pi/180),v0*sin(theta0*pi/180)]'; 
  
%solves the ODEs 
[t,z] = ode45(@rhs,tspan,z0,[],b,m,g); 
  
%Unpack the variables 
x= z(:,1); 
y =z(:,2); 
v_x = z(:,3); 
v_y=z(:,4); 
  
%plot the results 
plot(x,y); 
xlabel('x(m)'); 
ylabel('y(m)'); 
%set grid,xmin,xmax,ymin,ymax 
axis([0,5,0,5]); 
title(['Plot of Trajectory for theta= ',num2str(theta0),' degrees']); 
  
end 
  
%-----------------------------------------------------------------------% 
function zdot = rhs(t,z,b,m,g)           %function to define ODE 
x=z(1); y=z(2); v_x=z(3); v_y=z(4); 
  
%the linear momentum balance eqns 
xdot=v_x; 
v_xdot=-(b/m)*v_x*(v_x^2+v_y^2)^0.5; 
ydot=v_y; 
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46 Chapter 10.1. Dynamics of a particle in space Problem 10.1.30 (continued)

v_ydot=-g-(b/m)*v_y*(v_x^2+v_y^2)^0.5; 
  
zdot=[xdot; ydot; v_xdot; v_ydot]; %this is what the function returns (column vector) 
  
end 
%-----------------------------------------------------------------------% 
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Chapter 10.1. Dynamics of a particle in space Problem 10.1.30 (continued) 47

 

 
c). Disregard this question. This question intends to ask you develop your own ode solver similar 
to ode45, using Euler’s method or more sophisticated method (Ruger-Kutta method). 
 
d). To find out x distance, we use ‘stopevent’ to terminate the integration at y=0. Then loop over 
for theta from 0.1 to 89.1 degree with an increment of 1 degree. 
 
%problem 10.30(d) 
  
function solution1030d 
%solution to 10.30 
%September 23,2008 
  
b=1; m=1; g=10; % give values for b,m and g here 
  
%Initial conditions and time span 
tspan=[0 50]; %integrate for 50 seconds 
x0=0; 
y0=0;      %initial position 
v0=50;    %magnitude of initial velocity (m/s) 
  
theta0=[0.1:1:89.1]';  %angle of initial velocity (in degrees) 
distance=zeros(size(theta0));  %arrays to record x distance at y=0 for each angle 
  
for i=1:length(theta0) 
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48 Chapter 10.1. Dynamics of a particle in space Problem 10.1.30 (continued)

  
z0=[x0,y0,v0*cos(theta0(i)*pi/180),v0*sin(theta0(i)*pi/180)]'; 
  
options=odeset('events', @stopevent); 
%solves the ODEs 
[t,z] = ode45(@rhs,tspan,z0,options,b,m,g); 
  
%Unpack the variables 
x= z(:,1); 
distance(i)=x(end);% the last component of x is the distance we want 
end 
plot(theta0,distance,'*') 
xlabel('theta(degrees)'); 
ylabel('distance(m)'); 
%set grid,xmin,xmax,ymin,ymax 
title(['plot of x distance for various theta']); 
  
[maxd,j]=max(distance); 
fprintf(1,'\nThe maximum distance is %6.4f m when theta=%2.0f degrees\n', maxd,theta0(j)); 
%print the results 
end 
  
%-----------------------------------------------------------------------% 
function zdot = rhs(t,z,b,m,g)           %function to define ODE 
x=z(1); y=z(2); v_x=z(3); v_y=z(4); 
  
%the linear momentum balance eqns 
xdot=v_x; 
v_xdot=-(b/m)*v_x*(v_x^2+v_y^2)^0.5; 
ydot=v_y; 
v_ydot=-g-(b/m)*v_y*(v_x^2+v_y^2)^0.5; 
  
zdot=[xdot; ydot; v_xdot; v_ydot]; %this is what the function returns (column vector) 
  
end 
%-----------------------------------------------------------------------% 
function [value, isterminal, dir]= stopevent(t,z,b,m,g,v0,theta) 
% terminate the integration at y=0 
x=z(1); 
y=z(2); 
value= y; 
isterminal=1; 
dir=-1; 
end 
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Chapter 10.1. Dynamics of a particle in space Problem 10.1.30 (continued) 49

 
Matlab out put: The maximum distance is 3.3806 m when theta=23 degrees 
 
10.30 (Continued) 
The x distance at y=0 for various theta is plotted below 

 

 
e). Use the code for (a) and change b to a very large number, 100000. The trajectory looks like 

, 
which is approximately a triangle. 
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50 Chapter 10.1. Dynamics of a particle in space Problem 10.1.30 (continued)

10.30 Another solution (more detailed)

The m file attached does the following.

a) uses events and  x(end) to calculate range.
b) has that embedded in a loop so that there is an angle(i) and
   a range(i)
c) Makes a nice plot of range vs angle
d) uses MAX to find the maximum range and corresponding angle
e) has good numerics to show that the trajectory shape converges to
   a triangle as the speed -> infinity.
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function baseball_trajectory
% Calculates the trajectory of a baseball.
% Calculates maximum range for given speed,
% with and without air friction.
% Shows shape of path at high speed.
disp(['Start time:  ' datestr(now)])
cla

% (a) ODEs are in the function rhs far below.
%     The 'event' fn that stops the integration
%     when the ball hits the ground is in 'eventfn'
%     even further below.
% (b) Coefficients for a real baseball taken
% from a google search, which finds a paper
% Sawicki et al, Am. J. Phys. 71(11), Nov 2003.
% Greg Sawicki, by the way, learned some dynamics 
% in TAM 203 from Ruina at Cornell. 

% All parameters in MKS.
m   = 0.145;    % mass of baseball, 5.1 oz
rho = 1.23;     % density of air in kg/m^3
r   = 0.0366;   % baseball radius (1.44 in)
A   = pi*r^2;   % cross sectional area of ball
C_d = 0.35;     % varies, this is typical
g   = 9.81;     % typical g on earth
b   = C_d*rho*A/2; % net coeff of v^2 in drag force

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (b-d)  Use typical homerun hit speed and look
% at various  angles of hit.

tspan=linspace(0,100,1001); % give plenty of time
n = 45;  % number of simulations 
angle = linspace(1,89,n);  %  launch from 1 to 89 degrees
r0=[0 0]';   % Launch x and y position.

% First case:  No air friction.
b = 0;
subplot(3,2,1)
hold off

% Try lots of launch angles, one simulation for
% each launch angle.
for i = 1:n  
inspeed = 44;  % typical homerun hit (m/s), 98 mph.

theta0 = angle(i)*pi/180; % initial angle this simulation
v0=inspeed*[cos(theta0) sin(theta0)]'; %launch velocity
z0=[r0; v0]; % initial position and velocity
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52 Chapter 10.1. Dynamics of a particle in space Problem 10.1.30 (continued)

options=odeset('events',@eventfn);
[t zarray]=ode45(@rhs,tspan,z0,options,g,b,m); %Solve ODE

x=zarray(:,1); y=zarray(:,2); %Unpack positions
range(i)= x(end); % x value at end,  when ball hits ground

plot(x,y); title('Jane Cho: Baseball trajectories, no air friction')
xlabel('x, meters'); ylabel('y, meters'); axis('equal')
axis([0 200 0 200])
hold on  % save plot for over-writing
end % end of for loop for no-friction trajectories

%Plot range vs angle, no friction case
subplot(3,2,2); hold off;
plot(angle,range);
title('Range vs hit angle, no air friction')
xlabel('Launch angle, in degrees')
ylabel('Hit distance, in meters')

% Pick out best angle and distance
[bestx besti] = max(range);
disp(['No friction case:'])
best_theta_deg = angle(besti)
bestx

% Second case:  WITH air friction
% Identical to code above but now b is NOT zero.
b   = C_d*rho*A/2; % net coeff of v^2 in drag force

subplot(3,2,3)
hold off % clear plot overwrites

% Try lots of launch angles
for i = 1:n  % 
inspeed = 44;  % typical homerun hit (m/s), 98 mph.

theta0 = angle(i)*pi/180; % initial angle this simulation
v0=inspeed*[cos(theta0) sin(theta0)]'; %launch velocity
z0=[r0; v0]; % initial position and velocity

options=odeset('events',@eventfn);
[t zarray]=ode45(@rhs,tspan,z0,options,g,b,m); %Solve ODE

x=zarray(:,1); y=zarray(:,2); %Unpack positions
range(i)= x(end); % x value at end,  when ball hits ground

plot(x,y); title('Baseball trajectories, with air friction')
xlabel('x, meters'); ylabel('y, meters'); axis('equal')
axis([0 120 0 120])
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hold on  % save plot for over-writing
end % end of for loop for with-friction trajectories

%Plot range vs angle, no friction case
subplot(3,2,4); 
plot(angle,range);
title('Range vs hit angle, with air friction')
xlabel('Launch angle, in degrees')
ylabel('Hit distance, in meters')

%Find Max range and corresponding launch angle
[bestx besti] = max(range);
disp(['With Friction:'])
best_theta_deg = angle(besti)
bestx

%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now look at trajectories at a variety of speeds
% Try lots of launch angles
subplot(3,2,6)
hold off
speeds = 10.^linspace(1,8,30); % speeds from 1 to 100 million m/s
for i = 1:30  % 
inspeed = speeds(i);  % typical homerun hit (m/s), 98 mph.

theta0 = pi/4; % initial angle is 45 degrees at all speeds
v0=inspeed*[cos(theta0) sin(theta0)]'; %launch velocity
z0=[r0; v0]; % initial position and velocity

options=odeset('events',@eventfn);
[t zarray]=ode45(@rhs,tspan,z0,options,g,b,m); %Solve ODE

x=zarray(:,1); y=zarray(:,2); %Unpack positions
range(i)= x(end); % x value at end,  when ball hits ground

plot(x,y); title('Trajectories, with air friction, various speeds ')
xlabel('x, meters'); ylabel('y, meters'); axis('equal')
axis([0 2000 0 2000])
hold on  % save plot for over-writing
end % end of for loop for range at various speeds

disp(['End time:  ' datestr(now)])
end % end of Baseball_trajectory.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Governing Ord Diff Eqs.
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function zdot=rhs(t,z,g,b,m)
% Unpack the variables
x=z(1); y=z(2);
vx=z(3); vy=z(4);

%The ODEs
xdot=vx; ydot=vy; v = sqrt(vx^2+vy^2);
vxdot=-b*vx*v/m;
vydot=-b*vy*v/m - g;

zdot= [xdot;ydot;vxdot;vydot]; % Packed up again.
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 'Event' that ball hits the ground
function [value isterminal dir] = eventfn(t,z,g,b,m)
y=z(2);
value = y;      % When this is zero, integration stops
isterminal = 1; % 1 means stop.
dir= -1;        % -1 means ball is falling when it hits
end
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A whole bunch of 

trajectories.  The one 

launched at 45 degrees

goes the farthest.

As expected from

simple calculations,

the best angle, when

there is no friction, is

45 degrees.

With friction, the best

launch velocity is less.

At this speed, 44 m/s,

the best angle is about

41 degrees.

Note that with friction the

ball doesn’t go as far. Nor

as high when popped up.

Baseball.  For the first 4 plots realistic ball properties are used and the launch speed

is always 44 m/s (typical home run hit).  Spin is ignored.

At right are a bunch of trajectories. The

slowest launch is 10 m/s, the fastest 

is 100,000,000 m/s. Such a ball would

burn up, tear apart etc... but ignore that.

Note that as the speed gets large the

trajectory gets closer and closer to,

its a strange and beautiful shape, to a

triangle.  The same would happen if the

speed were fixed and the drag progressively

increased. 

With no friction the range increases with the

square of the speed.  With quadratic drag, at high 

speeds the range goes up  with the log of the launch speed. Like the penetration distance of a bullet.
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Chapter 10.2. Momentum and energy for particle motion Problem 10.2.22 57

10.2.22 At a time of interest, a particle
with mass m1 D 5 kg has position, ve-
locity, and acceleration *r1 D 3mO{, *v1 D
�4m=s O|, and *a1 D 6m=s2 O|, respec-
tively. Another particle with mass m2 D
5 kg has position, velocity, and accelera-
tion *r2 D �6mO{, *v2 D 5m=s O|, and
*a2 D �4m=s2 O|, respectively. For this
system of two particles, and at this time,
find its

a) linear momentum
*

L,

b) rate of change of linear momentum
P*
L

c) angular momentum about the origin
*

H=O,

d) rate of change of angular momen-

tum about the origin P*
H=O,

e) kinetic energy EK, and

f) rate of change of kinetic energy PEK.
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Chapter 10.3. Central force motion Problem 10.3.5 59

Experts note that these problems do
not use polar coordinates or any other
fancy coordinate systems. Such descrip-
tions come later in the text. At this point
we want to lay out the basic equations and
the qualitative features that can be found
by numerical integration of the equations
using Cartesian (xyz) coordinates.

10.3.5 An intercontinental misile, mod-
elled as a particle, is launched on a ballis-
tic trajectory from the surface of the earth.
The force on the missile from the earth’s
gravity is F D mgR2=r2 and is directed
towards the center of the earth. When it is
launched from the equator it has speed v0
and in the direction shown, 45� from hor-
izontal (both measured relative to a New-
tonian reference frame). For the purposes
of this calculation ignore the earth’s rota-
tion. You can think of this problem as two-
dimensional in the plane shown. If you
need numbers, use the following values:

m D 1000 kg = missile mass
g D 10m=s2 at the earth’s surface,
R D 6; 400; 000m = earth’s radius,

and
v0 D 9000m=s.

The distance of the missile from the center
of the earth is r.t/.

a) Draw a free body diagram of the
missile. Write the linear momen-
tum balance equation. Break this
equation into x and y components.

Rewrite these equations as a system
of-4 first order ODE’s suitable for
computer solution. Write appropri-
ate initial conditions for the ODE’s.

b) Using the computer (or any other
means) plot the trajectory of the
rocket after it is launched for a time
of 6670 seconds. [Hint: use a much
shorter time when debugging your
program.] On the same plot draw a
(round) circle for the earth.
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60 Chapter 10.3. Central force motion Problem 10.3.5 (continued)

a/-,

10.61 b - Matlab code

function Probl061()
% Problem 10.61 Solution
% March 27, 2008

% VARIABLES (Assume consistent units)
% r = displacement vector [x,y]
% v = velocity vector = dr/dt [vx,vy]

m= 1000; % Mass of satellite (kg)
R- 6400000; % Radius of Earth (m)
g= 9.81; % Gravity acceleration (m/sA2)
vO= 9000; % Initial velocity (m/s)
theta= 45; % Launch angle (degrees)

% INITIAL CONDITIONS
xO= R;
yO= 0;
vxO= vO*cosd(theta);
vyO= vO*sind(theta);
zO= [xO yO vxO vyO]1; % pack variables

tspan= [0 6670]; % seconds

[t zarray]= ode45(@rhs,tspan,zO/[],m,R,g);

% Unpack Variables
x= zarray(:,1);
y= zarray(:,2);

plot(x,y,fr—');
title(fPlot of Earth and Satellite Orbit1)
xlabel(?x [m] ?)
ylabel(fy [m]f)
axis(1000000*[-8 15 -8 15])

hold on;

% Draw the Earth
t= 0:pi/100:2*pi;
ex= R^cos (t);
ey= R*sin(t);
plot(ex,ey,fbf);

end

% THE DIFFERENTIAL EQUATION fThe Right Hand Side1

function zdot = rhs(t,z,m,R,g)

% Unpack variables
x= z(1);
y= z(2);
vx= z(3);
vy= z(4 ) ;

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1992-2009.



Chapter 10.3. Central force motion Problem 10.3.5 (continued) 61

% The equations
xdot= vx;
vxdot= -g*RA2/ (xA2+yA2) A (3/2) *x;
ydot= vy;
vydot= -g*RA2/ (xA2+yA2) A (3/2) *y;

% Pack the rate of change of x,y,vx and vy
zdot= [xdot ydot vxdot vydot]';

end

10.61b - Satellite Orbit Plot
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11.1.10 Montgomery’s eight. Three
equal masses, say m D 1, are attracted by
an inverse-square gravity law with G D 1.
That is, each mass is attracted to the other
by F D Gm1m2=r

2 where r is the dis-
tance between them. Use these unusual
and special initial positions:

.x1; y1/ D .�0:97000436; 0:24308753/
.x2; y2/ D .�x1;�y1/
.x3; y3/ D .0; 0/

and initial velocities

.vx3; vy3/ D .0:93240737; 0:86473146/

.vx1; vy1/ D �.vx3; vy3/=2
.vx2; vy2/ D �.vx3; vy3/=2:

For each of the problems below show ac-
curate computer plots and explain any cu-
riosities.

a) Use computer integration to find
and plot the motions of the par-
ticles. Plot each with a different
color. Run the program for 2.1 time
units.

b) Same as above, but run for 10 time
units.

c) Same as above, but change the ini-
tial conditions slightly.

d) Same as above, but change the ini-
tial conditions more and run for a
much longer time.

Pa •4/1
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cocia orxi p*o*s -for
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Chapter 11.1. Coupled motions of particles in space Problem 11.1.10 (continued) 63

function ProblllO ()
% Problem 11.10 Solution
% April 1, 2008

% VARIABLES

G= 1;
m= 1;

% Initial Conditions
r01= [-0.97000436 0.24308753]'; r02 = -rOl; r03= [0 0]';
v03= [0.93240737 0 . 86473146] f ; v01= -l/2*v03; v02= -l/2*v03;

zO= [rOl; r02; r03; vOl; v02; v03] ; % pack variables

tspan- [0 10] ;

[t zarray]= ode45 (@rhs, tspan, zO, [ ] , G,m) /

% Unpack variables
rl= zarray ( : r 1 : 2 ) ;
r2= zarray ( : , 3 : 4 ) ;
r3= zarray ( : , 5 : 6) ;

, 'r');
hold on;
plot(r2(:,l), r2(:,2), 'b~ f

plot(r3(:,l)f r3(:,2), 'g-.
 f

end

% THE DIFFERENTIAL EQUATIONS (RIGHT HAND SIDE)
function zdot = rhs(t,z,G,m)

% Unpack variables
rl= z(l:2) ;
r2= z (3:4);
r3= z (5:6);
vl= z(7:8);
v2 = z(9:10);
v3= z (11:12);

% The equations
rldot= vl; r2dot= v2; r3dot= v3;
vldot- G*m*((r3-rl)/(sqrt(sum((r3-rl).A2)))A3+...

(r2-rl)/(sqrt(sum((r2-rl).A2)))A3);
v2dot= G^m*((rl-r2)/(sqrt(sum((rl-r2).A2)))A3+...

(r3-r2)/(sqrt(sum((r3-r2).A2)))A3);
v3dot= G^m^((rl-r3)/(sqrt(sum((rl-r3).A2)))A3+...

(r2-r3)/(sqrt(sum((r2-r3).A2)))A3);

Pack the rate of change variables
zdot= [rldot; r2dot; r3dot; vldot; v2dot; v3dot];

end
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64 Chapter 11.1. Coupled motions of particles in space Problem 11.1.10 (continued)

(q)

S'lS'D0S'Q-

E'O-

I'D-

0

I'D

Z'Q

E'O

9'I9'00
t'Q-

E'O-

\

\
\

\

\

/

0

I'D

E'O

fr'O

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1992-2009.



Chapter 11.1. Coupled motions of particles in space Problem 11.1.10 (continued) 65
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66 Chapter 11.2. Collisions and explosions Problem 11.2.7

11.2.7 Two frictionless equal-mass pucks
sliding on a plane collide as shown be-
low. Puck A is initially at rest. Given
that .VB /i D 1:0m=s, .VA/i D 0, and
.VA/f D 0:5m=s, find the approach an-
gle � and rebound angle  . The coefficient
of restitution is e D 0:9.

Filename:Danef94s2q8
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Problem 11.7
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Chapter 11.2. Collisions and explosions Problem 11.2.10 69

11.2.10 Solve the general two-particle
frictionless collision problem. For exam-
ple, write computer code that has lines like
this near the start :

m1=3; m2=19 Set values of masses
v1zero=[10 20] Initial velocity of

mass 1
v2zero=[-5 3] Initial velocity of

mass 2
e=.5 Set coefficient of

restitution
theta=pi/4 Angle that the

normal to contact
plane makes,
measured CCW from
+x axis, in radians

Your program (function, code, script)
should calculate the impulse of mass 1

on mass 2, and the velocities of the two
masses after the collision. Your pro-
gram should assume consistent units for all
quantities.

a) You should demonstrate that your
program works by solving at least
4 different problems for which you
can check your answer by sim-
ple pencil-and-paper calculations.
These problems should have as
much variety as possible. Sketch
these problems clearly, show their
analytic solution, and show that the
computer agrees.

b) Solve the problem given in the sam-
ple text given in the initial problem
statement.

Two-Particle Collisions
Problem 11.20 Solution
April 1, 2008

theta = 45;
nx = cosd(theta);
ny = sind(theta);
n = [nx ny] f;
vlbef = [10 20
v2bef = [-5 3
ml = 3; m2 = 19;
e = . 5;

angle (degrees) between n and plus x axis

impulse direction
vel of ml before collision
vel of m2 before collision
values of two masses
coefficient of restitution

Write governing equations in form of Az=b
where z is a list of unknowns representing
the particle velocities after the collision
and the magnitude of the impulse.

A = [ ml
0

-nx
0
0

0
ml

-ny
0
0

m2
0
nx
m2
0

0
m2
ny
0
m2

0
0
0

-nx
-ny] ;

x comp of lin mom bal
y comp of lin mom bal
restitution equation
impulse-momentum for m2,
impulse-momentum for m2,

x comp
y comp

b = [ml*vlbef + m2*v2bef;
-e*sum( (v2bef-vlbef
m2*v2bef ] ;

n)
x & y comps of lin mom bal for syst
restitution equation
impulse-momentum for m2, x & y comps

z= A\b;

Type out the solution (crudely).
disp(f vlxaft vlyaft v2xaft v2yaft
disp (z f);

P1);

ANSWER:
vlxaft
-10.7273

vlyaft
-0.7273

v2xaft
-1.7273

v2yaft
6.2727 87.9384
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70 Chapter 11.2. Collisions and explosions Problem 11.2.10 (continued)

A ball m is thrown horizontally at

height h and speed v0. It then has a

sequence of bounces on the horizontal

ground. Treating each collision as friction-

less with restitution coefficient e how far

has the ball travelled horizontally when it

just finishes bouncing? Answer in terms

of some or all of m; g; h; v0 and e. A

ball m is thrown horizontally at height h

and speed v0. It then has a sequence of

bounces on the horizontal ground. Treat-

ing each collision as frictionless with resti-

tution coefficient e how far has the ball

travelled horizontally when it just finishes

bouncing? Answer in terms of some or all

of m; g; h; v0 and e.
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For all problems, unless stated other-
wise, treat all strings as inextensible, flex-
ible and massless. Treat all pulleys and
wheels as round, frictionless and mass-
less. Assume all massive objects are pre-
vented from rotating (e.g., wheels stay on
the ground, etc.). When numbers are called
for use g D 10m=s2 or g D 32 ft=s2.

12.1.6 For the various situations pictured,
find the acceleration of mass A and point
B. Clearly define any variables, coordi-
nates or sign conventions that you use.

Filename:pulley1
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Problem 12.6: Four different ways to pull
a mass.
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Chapter 12.1. 1D constrained motion and pulleys Problem 12.1.14 73

12.1.14 For the situations pictured, find
the accelerations of mass A and of point B.
Clearly define any variables, coordinates
or sign conventions that you use.

a) A single mass and four pulleys.

b) Two masses and two pulleys.

c) A single mass and four pulleys.

Filename:pulley4
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Problem 12.14: Various pulley arrange-
ments.
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76 Chapter 12.1. 1D constrained motion and pulleys Problem 12.1.26

12.1.26 Block A, with mass mA, is pulled
to the right a distance d from the position
it would have if the spring were relaxed. It
is then released from rest. Assume ideal
string, pulleys and wheels. The spring has
constant k.

a) What is the acceleration of block A
just after it is released (in terms of
k, mA, and d )?

b) What is the speed of the mass when

the mass passes through the posi-
tion where the spring is relaxed? .
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Chapter 12.2. 1D motion with 2D and 3D forces Problem 12.2.11 77

12.2.11 Guyed plate on a cart A uniform
rectangular plate ABCD of mass m is sup-
ported by a rod DE and a hinge joint at
point B . The dimensions are as shown.
There is gravity. What must the acceler-
ation of the cart be in order for massless
rod DE to be in tension?
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12.2.14 A uniform rectangular plate of
mass m is supported by an inextensible ca-
ble AB and a hinge joint at point E on the
cart as shown. The hinge joint is attached
to a rigid column welded to the floor of the
cart. The cart has acceleration ax O{. There
is gravity. Find the tension in cable AB .
(What’s ‘wrong’ with this problem? What
if instead point B were at the bottom left
hand corner of the plate?)
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80 Chapter 12.2. 1D motion with 2D and 3D forces Problem 12.2.25

12.2.25 Car braking: front brakes ver-
sus rear brakes versus all four brakes.
What is the peak deceleration of a car when
you apply: the front brakes till they skid,
the rear brakes till they skid, and all four
brakes till they skid? Assume that the
coefficient of friction between rubber and
road is � D 1 (about right, the coeffi-
cient of friction between rubber and road
varies between about :7 and 1:3) and that
g D 10m=s2 (2% error). Pick the dimen-
sions and mass of the car, but assume the
center of mass height h is greater than zero
but is less than half the wheel base w, the
distance between the front and rear wheel.
Also assume that the CM is halfway be-
tween the front and back wheels (i.e., lf D
lr D w=2). The car has a stiff sus-
pension so the car does not move up or
down or tip appreciably during braking.
Neglect the mass of the rotating wheels
in the linear and angular momentum bal-
ance equations. Treat this problem as two-
dimensional problem; i.e., the car is sym-
metric left to right, does not turn left or
right, and that the left and right wheels
carry the same loads. To organize your
work, here are some steps to follow.

a) Draw a FBD of the car assuming
rear wheel is skidding. The FBD
should show the dimensions, the
gravity force, what you know a pri-
ori about the forces on the wheels
from the ground (i.e., that the fric-
tion force Fr D �Nr , and that there
is no friction at the front wheels),
and the coordinate directions. Label
points of interest that you will use in
your momentum balance equations.
(Hint: also draw a free body dia-
gram of the rear wheel.)

b) Write the equation of linear mo-
mentum balance.

c) Write the equation of angular mo-
mentum balance relative to a point
of your choosing. Some particu-
larly useful points to use are:

� the point above the front
wheel and at the height of the
center of mass;

� the point at the height of the
center of mass, behind the
rear wheel that makes a 45
degree angle line down to
the rear wheel ground contact
point; and

� the point on the ground
straight under the front wheel
that is as far below ground as
the wheel base is long.

d) Solve the momentum balance equa-
tions for the wheel contact forces
and the deceleration of the car. If
you have used any or all of the
recommendations from part (c) you
will have the pleasure of only solv-
ing one equation in one unknown at
a time.

e) Repeat steps (a) to (d) for front-
wheel skidding. Note that the ad-
vantageous points to use for angular
momentum balance are now differ-
ent. Does a car stop faster or slower
or the same by skidding the front
instead of the rear wheels? Would
your solution to (e) be different if
the center of mass of the car were at
ground level(h=0)?

f) Repeat steps (a) to (d) for all-wheel
skidding. There are some shortcuts
here. You determine the car de-
celeration without ever knowing the
wheel reactions (or using angular
momentum balance) if you look at
the linear momentum balance equa-
tions carefully.

g) Does the deceleration in (f) equal
the sum of the decelerations in (d)
and (e)? Why or why not?

h) What peculiarity occurs in the solu-
tion for front-wheel skidding if the
wheel base is twice the height of the
CM above ground and � D 1?

i) What impossibility does the solu-
tion predict if the wheel base is
shorter than twice the CM height?
What wrong assumption gives rise
to this impossibility? What would
really happen if one tried to skid a
car this way?
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82 Chapter 12.2. 1D motion with 2D and 3D forces Problem 12.2.43

12.2.43 The uniform 2 kg plate DBFH
is held by six massless rods (AF, CB, CF,
GH, ED, and EH) which are hinged at their
ends. The support points A, C, G, and E are
all accelerating in the x-direction with ac-
celeration a D 3m=s2{. There is no grav-
ity.

a) What is fP *

F g � O{ for the forces act-
ing on the plate?

b) What is the tension in bar CB?
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Chapter 12.2. 1D motion with 2D and 3D forces Problem 12.2.47 83

12.2.47 A rear-wheel drive car on level
ground. The two left wheels are on per-
fectly slippery ice. The right wheels are on
dry pavement. The negligible-mass front
right wheel at B is steered straight ahead
and rolls without slip. The right rear wheel
at C also rolls without slip and drives the
car forward with velocity*v D v O| and ac-
celeration *a D a O|. Dimensions are as
shown and the car has mass m . What is
the sideways force from the ground on the
right front wheel at B? Answer in terms of
any or all of m, g, a, b, `, w, and O{.
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13.1.1 A particle goes on a circular path
with radius R making the angle � D ct
measured counter clockwise from the pos-
itive x axis. Assume R D 5 cm and c D
2� s�1.

a) Plot the path.

b) What is the angular rate in revolu-
tions per second?

c) Put a dot on the path for the location
of the particle at t D t� D 1=6 s.

d) What are the x and y coordinates
of the particle position at t D t�?
Mark them on your plot.

e) Draw the vectors Oe
�

and Oe
R

at t D
t�.

f) What are the x and y components
of Oe

R
and Oe

�
at t D t�?

g) What are the R and � components
of O{ and O| at t D t�?

h) Draw an arrow representing both
the velocity and the acceleration at
t D t�.

i) Find the Oe
R

and Oe
�

components of
position*r , velocity*v and accelera-
tion*a at t D t�.

j) Find the x and y components of po-
sition*r , velocity*v and acceleration
*a at t D t�. Find the velocity and
acceleration two ways:

1. Differentiate the position
given as*r D x O{C y O|.

2. Differentiate the position give
as*r D r Oer and then convert
the results to Cartesian coor-
dinates.
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Chapter 13.1. Kinematics of a particle in circular motion Problem 13.1.15 87

13.1.15 A particle moves in circles so that
its acceleration*a always makes a fixed an-
gle � with the position vector �*r , with
0 � � � �=2. For example, � D 0 would
be constant rate circular motion. Assume
� D �=4, R D 1m and P�0 D 1 rad= s.

How long does it take the particle to reach

a) the speed of sound (� 300m=s)?

b) the speed of light (� 3 � 108 m=s)?

c) 1?
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88 Chapter 13.2. Dynamics of a particle in circular motion Problem 13.2.30

13.2.30 Bead on a hoop with friction. A
bead slides on a rigid, stationary, circular
wire. The coefficient of friction between
the bead and the wire is �. The bead is
loose on the wire (not a tight fit but not
so loose that you have to worry about rat-
tling). Assume gravity is negligible.

a) Given v, m, R, & �; what is Pv?

b) If v.� D 0/ D v0, how does v de-
pend on � , �, v0 and m?
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90 Chapter 13.2. Dynamics of a particle in circular motion Problem 13.2.34

13.2.34 A block with mass m is moving
to the right at speed v0 when it reaches a
circular frictionless portion of the ramp.

a) What is the speed of the block when
it reaches point B? Solve in terms of
R, v0, m and g.

b) What is the force on the block from
the ramp just after it gets onto the
ramp at point A? Solve in terms of
R, v0, m and g. Remember, force
is a vector. Filename:s93q4Sachse

R

A

B

g

v0

Problem 13.34

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1992-2009.



Chapter 13.2. Dynamics of a particle in circular motion Problem 13.2.34 (continued) 91

Introduction to Statics and Dynamics, c Andy Ruina and Rudra Pratap 1992-2009.



92 Chapter 13.3. 2D rigid-object rotation kinematics Problem 13.3.8

13.3.8 Write a computer program to
animate the rotation of an object. Your
input should be a set of x and y co-
ordinates defining the object (such that
plot y vs x draws the object on the

screen) and the rotation angle � . The out-
put should be the rotated coordinates of the
object.

a) From the geometric information
given in the figure, generate coordi-
nates of enough points to define the
given object.

b) Using your program, plot the object
at � D 20�; 60�; 100�; 160�; and
270�.

c) Assume that the object rotates

with constant angular speed ! D
2 rad=s. Find and plot the position
of the object at t D 1 s; 2 s; and3 s.
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Chapter 13.4. 2D rigid-object angular velocity Problem 13.4.14 99

13.4.14 A 0:4m long rod AB has many
holes along its length such that it can be
pegged at any of the various locations. It
rotates counter-clockwise at a constant an-
gular speed about a peg whose location is
not known. At some instant t , the velocity
of end B is *vB D �3m=s O|. After �

20 s,
the velocity of end B is*vB D �3m=sO{. If
the rod has not completed one revolution
during this period,

a) find the angular velocity of the rod,
and

b) find the location of the peg along the
length of the rod.
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100 Chapter 13.4. 2D rigid-object angular velocity Problem 13.4.22

13.4.22 2-D constant rate gear train.
The angular velocity of the input shaft
(driven by a motor not shown) is a con-
stant, !input D !A. What is the angular
velocity !output D !C of the output shaft
and the speed of a point on the outer edge
of disc C , in terms of RA, RB , RC , and
!A?
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Chapter 13.6. Dynamics of rigid-object planar circular motion Problem 13.6.10 101

13.6.10 Motor turns a bent bar. Two
uniform bars of length ` and uniform mass
m are welded at right angles. One end is
attached to a hinge at O where a motor
keeps the structure rotating at a constant
rate ! (counterclockwise). What is the net
force and moment that the motor and hinge
cause on the structure at the instant shown.

a) neglecting gravity

b) including gravity.
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Chapter 13.6. Dynamics of rigid-object planar circular motion Problem 13.6.20 103

13.6.20 At the input to a gear box a 100 lbf
force is applied to gear A. At the output,
the machinery (not shown) applies a force
of FB to the output gear. Gear A rotates at
constant angular rate ! D 2 rad=s, clock-
wise.

a) What is the angular speed of the
right gear?

b) What is the velocity of point P ?

c) What is FB?

d) If the gear bearings had friction,
would FB have to be larger or
smaller in order to achieve the same
constant velocity?

e) If instead of applying a 100 lbf to
the left gear it is driven by a mo-
tor (not shown) at constant angular
speed !, what is the angular speed
of the right gear?
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Chapter 13.6. Dynamics of rigid-object planar circular motion Problem 13.6.34 107

13.6.34 A pegged compound pendu-
lum. A uniform bar of mass m and length
` hangs from a peg at point C and swings
in the vertical plane about an axis passing
through the peg. The distance d from the
center of mass of the rod to the peg can be
changed by putting the peg at some other
point along the length of the rod.

a) Find the angular momentum of the
rod about point C.

b) Find the rate of change of angular
momentum of the rod about C.

c) How does the period of the pendu-
lum vary with d? Show the varia-
tion by plotting the period against
d
`

. [Hint, you must first find the
equations of motion, linearize for
small � , and then solve.]

d) Find the total energy of the rod (us-
ing point C as a datum for potential
energy).

e) Find R� when � D �=6.

f) Find the reaction force on the rod at
C, as a function of m, d , `, � , and
P� .

g) For the given rod, what should be
the value of d (in terms of `) in or-
der to have the fastest pendulum?

h) Test of Schuler’s pendulum. The
pendulum with the value of d ob-
tained in (g) is called the Schuler’s

pendulum. It is not only the fastest
pendulum but also the “most accu-
rate pendulum”. The claim is that
even if d changes slightly over time
due to wear at the support point,
the period of the pendulum does not
change much. Verify this claim by
calculating the percent error in the
time period of a pendulum of length
` D 1m under the following three
conditions: (i) initial d D 0:15m
and after some wear d D 0:16m,
(ii) initial d D 0:29m and after
some wear d D 0:30m, and (iii)
initial d D 0:45m and after some
wear d D 0:46m. Which pendu-
lum shows the least error in its time
period? What is the connection be-
tween this result and the plot ob-
tained in (c)?
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14.1.1 A disk of radius R is hinged at
point O at the edge of the disk, approxi-
mately as shown. It rotates counterclock-
wise with angular velocity P� D *!. A bolt
is fixed on the disk at point P at a distance r
from the center of the disk. A frame x0y0 is
fixed to the disk with its origin at the center
C of the disk. The bolt position P makes an
angle � with the x0-axis. At the instant of
interest, the disk has rotated by an angle � .

a) Write the position vector of point P
relative to C in the x0y0 coordinates
in terms of given quantities.

b) Write the position vector of point P
relative to O in the xy coordinates
in terms of given quantities.

c) Write the expressions for the rota-
tion matrix R.�/ and the angular
velocity matrix S.*!/.

d) Find the velocity of point P relative

to C using R.�/ and the angular ve-
locity matrix S.*!/.

e) Using R D 30 cm, r D 25 cm, � D
60�, and � D 45�, find �*rC=0�xy ,
and �*rP=0�xy at the instant shown.

f) Assuming that the angular speed is
! D 10 rad=s at the instant shown,
find �*vC=0�xy and �*vP=0�xy taking
other quantities as specified above.
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14.1.12 The center of mass of a javelin
travels on a more or less parabolic path
while the javelin rotates during its flight. In
a particular throw, the velocity of the cen-
ter of mass of a javelin is measured to be
*vC D 10m=sO{ when the center of mass
is at its highest point h D 6m. As the
javelin lands on the ground, its nose hits
the ground at G such that the javelin is al-
most tangent to the path of the center of
mass at G. Neglect the air drag and lift on
the javelin.

a) Given that the javelin is at an angle
� D 45� at the highest point, find

the angular velocity of the javelin.
Assume the angular velocity iscon-
stant during the flight and that the
javelin makes less than a full revo-
lution.
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114 Chapter 14.2. Dynamics of a rigid object Problem 14.2.7

14.2.7 A uniform 1kg plate that is one
meter on a side is initially at rest in the po-
sition shown. A constant force

*

F D 1NO{
is applied at t D 0 and maintained hence-
forth. If you need to calculate any quantity
that you don’t know, but can’t do the cal-
culation to find it, assume that the value is
given.

a) Find the position of G as a func-
tion of time (the answer should have
numbers and units).

b) Find a differential equation, and ini-
tial conditions, that when solved
would give � as a function of time.
� is the counterclockwise rotation
of the plate from the configuration
shown.

c) Write computer commands that
would generate a drawing of the
outline of the plate at t D 1 s.
You can use hand calculations or

the computer for as many of the in-
termediate commands as you like.
Hand work and sketches should be
provided as needed to justify or ex-
plain the computer work.

d) Run your code and show clear out-
put with labeled plots. Mark output
by hand to clarify any points.
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118 Chapter 14.2. Dynamics of a rigid object Problem 14.2.9

14.2.9 A uniform slender bar AB of mass
m is suspended from two springs (each of
spring constant K) as shown. Immediately
after spring 2 breaks, determine

a) the angular acceleration of the bar,

b) the acceleration of point A, and

c) the acceleration of point B .
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120 Chapter 14.3. Kinematics of rolling and sliding Problem 14.3.3

The next
several problems concern Work, power and
energy

14.3.3 Rolling at constant rate. A round
disk rolls on the ground at constant rate. It
rolls 114 revolutions over the time of inter-
est.

a) Particle paths. Accurately plot the
paths of three points: the center of
the disk C, a point on the outer edge
that is initially on the ground, and
a point that is initially half way be-
tween the former two points. [Hint:
Write a parametric equation for the
position of the points. First find a
relation between ! and vC . Then
note that the position of a point is
the position of the center plus the
position of the point relative to the
center.] Draw the paths on the com-
puter, make sure x and y scales are
the same.

b) Velocity of points. Find the veloc-
ity of the points at a few instants in
the motion: after 1

4 , 1
2 , 3

4 , and 1
revolution. Draw the velocity vec-
tor (by hand) on your plot. Draw

the direction accurately and draw
the lengths of the vectors in propor-
tion to their magnitude. You can
find the velocity by differentiating
the position vector or by using rela-
tive motion formulas appropriately.
Draw the disk at its position after
one quarter revolution. Note that
the velocity of the points is perpen-
dicular to the line connecting the
points to the ground contact.

c) Acceleration of points. Do the
same as above but for acceleration.
Note that the acceleration of the
points is parallel to the line connect-
ing the points to the center of the
disk.
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126 Chapter 14.4. Mechanics of contact Problem 14.4.6

14.4.6 Spool Rolling without Slip and
Pulled by a Cord. The light-weight spool
is nearly empty but a lead ball with mass
m has been placed at its center. A force F
is applied in the horizontal direction to the
cord wound around the wheel. Dimensions
are as marked. Coordinate directions are as
marked.

a) What is the acceleration of the cen-
ter of the spool?

b) What is the horizontal force of the
ground on the spool?
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14.4.9 A napkin ring lies on a thick velvet
tablecloth. The thin ring (of massm, radius
r) rolls without slip as a mischievous child
pulls the tablecloth (mass M ) out with ac-
celeration A. The ring starts at the right
end (x D d ). You can make a reason-
able physical model of this situation with
an empty soda can and a piece of paper on
a flat table.

a) What is the ring’s acceleration as
the tablecloth is being withdrawn?

b) How far has the tablecloth moved
to the right from its starting point
x D 0 when the ring rolls off its
left-hand end?

c) Clearly describe the subsequent
motion of the ring. Which way does
it end up rolling at what speed?

d) Would your answer to the previ-
ous question be different if the ring
slipped on the cloth as the cloth was
being pulled out?
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130 Chapter 14.4. Mechanics of contact Problem 14.4.23

14.4.23 A disk rolls in a cylinder. For all
of the problems below, the disk rolls with-
out slip and rocks back and forth due to
gravity.

a) Sketch. Draw a neat sketch of
the disk in the cylinder. The sketch
should show all variables, coordi-
nates and dimension used in the
problem.

b) FBD. Draw a free body diagram of
the disk.

c) Momentum balance. Write the
equations of linear and angular mo-
mentum balance for the disk. Use
the point on the cylinder which
touches the disk for the angular mo-
mentum balance equation. Leave
as unknown in these equations vari-
ables which you do not know.

d) Kinematics. The disk rolling
in the cylinder is a one-degree-of-
freedom system. That is, the val-
ues of only one coordinate and its
derivatives are enough to determine
the positions, velocities and accel-
erations of all points. The angle
that the line from the center of the
cylinder to the center of the disk
makes from the vertical can be used
as such a variable. Find all of the

velocities and accelerations needed
in the momentum balance equation
in terms of this variable and it’s
derivative. [Hint: you’ll need to
think about the rolling contact in or-
der to do this part.]

e) Equation of motion. Write the an-
gular momentum balance equation
as a single second order differential
equation.

f) Simple pendulum? Does this
equation reduce to the equation for
a pendulum with a point mass and
length equal to the radius of the
cylinder, when the disk radius gets
arbitrarily small? Why, or why not?
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14.5.8 An acrobat modeled as a rigid
body with uniform rigid mass m of length
l . She falls without rotation in the position
shown from height h where she was sta-
tionary. She then grabs a bar with a firm
but slippery grip. What is h so that after
the subsequent motion the acrobat ends up
in a stationary handstand? [ Hint: What
quantities are preserved in what parts of the
motion?]
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15.1.5 Picking apart the polar coordi-
nate formula for velocity. This prob-
lem concerns a small mass m that sits in
a slot in a turntable. Alternatively you can
think of a small bead that slides on a rod.
The mass always stays in the slot (or on the
rod). Assume the mass is a little bug that
can walk as it pleases on the rod (or in the
slot) and you control how the turntable/rod
rotates. Name two situations in which one
of the terms is zero but the other is not in
the two term polar coordinate formula for
velocity, PR Oe

R
C R P� Oe

�
. You should thus

gain some insight into the meaning of each
of the two terms in that formula.
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15.1.6 Picking apart the polar coordi-
nate formula for acceleration. Recon-
sider the configurations in problem 15.1.5.
This time, name four situations in which
all of the terms, but one, in the four term

polar coordinate formula for acceleration,
*a D . RR � R P�2/ Oe

R
C .2 PR P� C R R�/ Oe

�
, are

zero. Each situation should pick out a dif-
ferent term. You should thus gain some in-
sight into the meaning of each of the four
terms in that formula.
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15.1.10 A particle travels at non-constant
speed on an elliptical path given by y2 D
b2.1 � x2

a2
/. Carefully sketch the ellipse

for particular values of a and b. For var-

ious positions of the particle on the path,
sketch the position vector *r.t/; the polar
coordinate basis vectors Oer and Oe

�
; and the

path coordinate basis vectors Oen and Oet . At
what points on the path are Oer and Oen par-
allel(or Oe

�
and Oet parallel)?
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15.2.5 Given that *r.t/ D ct2 O{0 and that
�.t/ D d sin.�t/ , find*v.t/

a) in terms of O{ and O|,

b) in terms of O{0 and O|0.
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15.3.2 Actual path of bug trying to walk
a straight line. A straight line is inscribed
on a horizontal turntable. The line goes
through the center. Let � be angle of ro-
tation of the turntable which spins at con-
stant rate P�0. A bug starts on the out-
side edge of the turntable of radius R and
walks towards the center, passes through
it, and continues to the opposite edge of
the turntable. The bug walks at a constant
speed vA, as measured by how far her feet
move per step, on the line inscribed on the
table. Ignore gravity.

a) Picture. Make an accurate draw-
ing of the bug’s path as seen in the
room (which is not rotating with the
turntable). In order to make this
plot, you will need to assume val-
ues of vA and P�0 and initial values
of R and �. You will need to write
a parametric equation for the path
in terms of variables that you can
plot (probably x and y coordinates).
You will also need to pick a range

of times. Your plot should include
the instant at which the bug walks
through the origin. Make sure your
x and y- axes are drawn to the same
scale. A computer plot would be
nice.

b) Calculate the radius of curvature of
the bug’s path as it goes through the
origin.

c) Accurately draw (say, on the com-
puter) the osculating circle when
the bug is at the origin on the pic-
ture you drew for (a) above.

d) Force. What is the force on the
bugs feet from the turntable when
she starts her trip? Draw this force
as an arrow on your picture of the
bug’s path.

e) Force. What is the force on the
bugs feet when she is in the mid-
dle of the turntable? Draw this force
as an arrow on your picture of the
bug’s path.
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function path1518() 
%%%  draw path 
R=1;  % radius of the turntable 
va=0.2; % velocity of the bug on the turntable 
phidot=1; % angular velocity of the turntable 
t=[0:0.1:10]; 
x=(R-va*t).*cos(phidot*t); 
y=(R-va*t).*sin(phidot*t); 
plot(x,y); 
axis equal; 
  
grid on; 
  
%%%% draw osculating circle when bug goes through the center 
rau=va/(2*phidot);  % radius of curvature of the path at the origin 
xc= va*sin(phidot*R/va)/(2*phidot); 
yc= -va*cos(phidot*R/va)/(2*phidot); % position of the center 
                             %draw the circle; 
theta=[0:0.01:2*pi]; 
circle1=xc+rau*cos(theta); 
circle2=yc+rau*sin(theta); 
hold on; 
plot(circle1,circle2,'r'); 
  
%%%% draw force vector 
m=1;       %mass of the bug 
scale=0.3;   % scale for graphics 
  
f1x=-m*R*phidot; 
f1y=-m*2*va*phidot; 
quiver(1,0,f1x,f1y,scale,'k'); % draw force at the beginning; 
  
f2x=2*m*va*phidot*sin(phidot*R/va); 
f2y=-2*m*va*phidot*cos(phidot*R/va); 
quiver(0,0,f2x,f2y,scale,'k'); %draw force at the origin 
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154 Chapter 15.3. General expressions for velocity and acceleration Problem 15.3.11

15.3.11 A honeybee, sensing that it can
get a cheap thrill, alights on a phonograph
turntable that is being carried by a carni-
val goer who is riding on a carousel. The
situation is sketched below. The carousel
has angular velocity of 5 rpm, which is in-
creasing (accelerating) at 10 rev=min2; the
phonograph rotates at a constant 33 1/3
rpm. The honeybee is at the outer edge
of the phonograph record in the position
shown in the figure; the radius of the record
is 7 inches. Calculate the magnitude of the
acceleration of the honeybee.
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156 Chapter 15.4. Kinematics of 2-D mechanisms Problem 15.4.1

15.4.1 Slider crank kinematics (No FBD
required!). 2-D . Assume R; `; �; P�; R� are
given. The crank mechanism parts move
on the xy plane with the x direction be-
ing along the piston. Vectors should be ex-
pressed in terms of O{; O|; and Ok components.

a) What is the angular velocity of the
crank OA?

b) What is the angular acceleration of
the crank OA?

c) What is the velocity of point A?
d) What is the acceleration of point A?
e) What is the angular velocity of

the connecting rod AB? [Geometry
fact: *rAB D

p
`2 �R2 sin2 � O{ �

R sin � O|]

f) For what values of � is the angular
velocity of the connecting rod AB
equal to zero (assume P� ¤ 0)? (you
need not answer part (e) correctly to
answer this question correctly.)
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158 Chapter 15.4. Kinematics of 2-D mechanisms Problem 15.4.4

15.4.4 The two rods AB and DE, con-
nected together through a collar C, rotate
in the vertical plane. The collar C is pinned
to the rod AB but is free to slide on the
frictionless rod DE. At the instant shown,
rod AB is rotating clockwise with angular
speed ! D 3 rad=s and angular accelera-
tion � D 2 rad=s2. Find the angular veloc-
ity of rod DE.
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15.4.10 The slotted link CB is driven in
an oscillatory motion by the link ED which
rotates about D with constant angular ve-
locity P� D !D . The pin P is attached to
ED at fixed radius d and engages the slot
on CB as shown. Find the angular veloc-
ity and acceleration P� and R� of CB when
� D �=2. Filename:pfigure-blue-65-3
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